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Humans display individual variability in cooperative behavior. While an ever-growing body of research has in-
vestigated the neural correlates of task-specific cooperation, the mechanisms by which situation-independent,
stable differences in cooperation render behavior consistent across a wide range of situations remain elusive.
Addressing this issue, we show that the individual tendency to behave in a prosocial or individualistic manner
can be predicted from the functional resting-state connectome. More specifically, connections of the
cinguloopercular networkwhich supports goal-directed behavior encode cooperative tendency. Effects of virtual
lesions to this network on the efficacy of information exchange throughout the brain corroborate our findings.
These results shed light on the neural mechanisms underlying individualists' and prosocials' habitual social
decisions by showing that reliance on the cinguloopercular task-control network predicts stable cooperative
behavior. Based on this evidence, we provide a unifying framework for the interpretation of functional imaging
and behavioral studies of cooperative behavior.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The way in which we divide resources between ourselves and other
individuals is central to the emergence andmaintenance of cooperation.
Awealth of behavioral investigations has shown that a stable individual
preference for the division of resources – commonly termed Social
Values Orientation (SVO; (Van Lange, 1999)) – exists, which renders co-
operative behavior fairly consistent across situational contexts (Bogaert
et al., 2008). In this framework, the so-called “prosocials”maximize the
sum of resources for themselves and for others, while simultaneously
minimizing the difference between the two. They strive for a fair
share. In contrast, the so-called “individualists” maximize resources
for themselves only and are not concerned with the welfare of others.
The disposition of SVO can affect cooperative behavior in diverse situa-
tions, from trusting in economic games and contributing to the public
good to real-life situations such as preferring public transport to taking
your own car to go to work to protect the environment (Balliet et al.,
2009; Bogaert et al., 2008; Kanagaretnam et al., 2009). SVO has been
shown to be stable over long periods of time, enabling prediction of
sychology II, Johann Wolfgang
3 Frankfurt amMain, Germany.
).
behavior in early adulthood from preferences displayed as early as
four years of age (Eisenberg et al., 1999).

Over the last decade, a plethora of investigations – mainly
employing paradigms from behavioral economics – has investigated
the neural basis of cooperation (for reviews, see Krueger et al. (2008)
and Rilling and Sanfey (2011)). Depending on task context, these stud-
ies have shown differential activity in brain regions associated with the
processing of social signals and extrinsic incentives to be crucial for in-
dividual differences in the tendency to cooperate (Declerck et al.,
2013). However, no study has addressed the more fundamental ques-
tion of how a stable behavioral disposition such as SVO can modulate
cooperative behavior across a wide variety of contexts. Thus, it is un-
clear how individual differences might be implemented in the brain to
allow for the broad and consistent effects on cooperative behavior we
empirically observe in humans.

To this end, we focused not on the neural correlates of any specific
economic game or behavior, but investigated the neural substrates of
trait-related SVO by relating it to the brain's resting-state dynamics,
i.e. its spontaneous, task-independent activation (Damoiseaux et al.,
2006; Dosenbach et al., 2006, 2007, 2008; Fox et al., 2005). Specifically,
we aimed to predict individual SVO from whole-brain, resting-state
functional network connectivities. Then addressing the question by
which mechanisms resting-state functional dynamics associated with
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SVOmight affect behavior across situations, we simulated a series of vir-
tual lesions on five functional brain networks (Dosenbach et al., 2007,
2010) and assessed changes in the efficacy of information exchange
throughout the brain for prosocials and individualists (see Fig. 1 for an
overview of the analysis steps).

Methods

Participants

Thirty-one healthy, right-handed subjects participated in the pres-
ent study. Two subjects had to be excluded due to excessive head mo-
tion (N1.5 mm/degree in any direction). The remaining sample
consisted of 16 females and 13 males with a mean age of 25.0 years
(SD = 3.53). All were recruited from a German local community
through advertisements. Written informed consent was obtained from
all participants after a complete description of the study was provided.
Our studywas approved by the ethics committee of the German Society
of Psychology (Deutsche Gesellschaft für Psychologie).

Psychometric assessment of Social Value Orientation

All participants completed the 15-item Social Value Orientation
(SVO) measure by Murphy et al. (2011) in its German paper version.
While the SVO questionnaire measures four tendencies (altruistic,
prosocial, individualistic and competitive), we focus on only two
of those in this study – namely the prosocial and the individualistic
tendencies – as the other two categories are extremely rare (less than
4% were competitive individuals while altruistic tendencies did not
occur at all in two samples totalling N = 156 participants; for details,
see Murphy et al. (2011)).

Subjects were alternatingly given parallel versions of the task which
contain the same items, but differ regarding itemorder. In the SVOmea-
sure, participants make decisions among various combinations of
Fig. 1. Data processing and analysis strategies. A) First, resting-state fMRI data was preprocesse
nectivity matrix was computed for each participant. B) Using amultivariate pattern classificatio
dicted from whole-brain functional connectivity. Then, we measured to what extent inform
C) Additionally, we compared changes in Global Efficiency between Prosocials and Individualis
outcomes for themselves and another person. Specifically, they are
asked to indicate their preference regarding how much money they
would allocate to themselves and to another person. Self-other alloca-
tion options are paired such that SVO can be derived while transitivity
as a fundamental psychometric requirement can be assessed. Generally,
theMurphy SVOmeasure shows high reliability as well as high internal
and external validity (Murphy et al., 2011). Our sample consisted of 15
prosocials and 14 individualists. The two groups did not differ signifi-
cantly with regard to age (t(27) = .31; p = .758) or gender (χ2(1) =
.29; p= .588). All subjects produced completely transitive sets of social
preference choices, i.e., all participants showed internally consistent
responses.

Resting-state fMRI acquisition

Subjects were scanned for 5 minutes. No specific instructions were
given except to close their eyes, relax and hold still. Head movements
were minimized by using a cushioned head fixation device. Imaging
was performed using a 1.5 T Siemens Magnetom Avanto TIM-system
MRI scanner (Siemens, Erlangen, Germany) equipped with a standard
12 channel head coil. In a single session, twenty-four 4-mm-thick, inter-
leaved axial slices (in-plane resolution: 3.28 × 3.28mm) oriented at the
AC-PC transverse planewere acquiredwith 1mm interslice gap, using a
T2*-sensitive single-shot EPI sequence with following parameters: rep-
etition time (TR; 2000ms), echo time (TE; 40 ms), flip angle (90°), ma-
trix (64 × 64), field of view (FOV; 210 × 210 mm2), and number of
volumes (150).

Functional MRI resting-state preprocessing

All analyses were conducted using the REST toolbox (Song et al.,
2011) with the Data Processing Assistant for Resting-State fMRI
(DPARSFA; V2.3) and Matlab software (The Mathworks, Natick,
Massachusetts). The first six volumes were discarded to account for
d, time-series for each region in the Dosenbach atlas were extracted and a functional con-
n approach, we assessedwhether a participants Social Value Orientation (SVO) can be pre-
ation from each of the five Dosenbach networks contributed to classifier performance.
ts before and after simulating virtual lesions to each of the five Dosenbach networks.



233T. Hahn et al. / NeuroImage 118 (2015) 231–236
magnetization saturation effects. Then the remaining data were slice
time corrected, head motion correction was applied and images were
normalized to the Montreal Neurological Institute (MNI) template.
The resulting fMRI data were then spatially smoothed with a 6 mm
FWHM Gaussian isotropic kernel. After that, the time series for each
voxel was detrended and bandpass-filtered (0.01–0.08 Hz) to reduce
low-frequency drift and physiological high frequency respiratory and
cardiac noise before the 6 headmotion parameters, the globalmean sig-
nal, the white matter signal and the cerebrospinal fluid signal were
regressed out. Based on the resulting data, functional whole-brain,
resting-state connectivity was computed from cortical regions of inter-
est (ROIs) previously described in Dosenbach et al. (2007, 2010) exclud-
ing the cerebellum employing Pearson correlation (see Fig. 1a).
Specifically, Dosenbach et al. defined the ROIs by constructing non-
overlapping spheres with a diameter of 10 mm around coordinates
from a series of five meta-analyses, focused on error-processing,
default-mode (task-induced deactivations),memory, language and sen-
sorimotor functions. In this study, the Dosenbach et al. template provid-
ed with the Data Processing Assistant for Resting-State fMRI (DPARSFA;
V2.3) was used for parcellation.

Assessingmean intra-network aswell as inter-network connectivity
reveals that intra-network connectivity is substantially higher in all
cases than inter-network connectivity (Supplementary Fig. S1). This
strongly suggests that the networks found previously are represented
in our data. This procedure yielded 10,011 unique correlation coeffi-
cients (connectivities) between the 142 regions of interest.

Predicting Social Values Orientation (SVO)

In order to predict a participant's SVO, tree ensemble classification
was performed using the Random Under Sampling Boost algorithm
(Seiffert et al., 2010) as implemented in Matlab (The Mathworks,
Natick, Massachusetts) with a minimum leaf size of 5 and a learning
rate of 0.1 growing 1000 trees. We used this approach mainly to over-
come the problem that, with a fixed number of training samples, the
accuracy reduces as the dimensionality increases (Hughes effect).
When attempting to generate whole-brain classification models in
ultra-high-dimensional space (one dimension for each of the 10,011
connections), we also have to assume that many – if not most –
dimensions add mostly noise. A prominent way to address both related
problems simultaneously is to select only those features (connections in
our case) during training which are known to improve the accuracy of
the model. This so-called boosting process reduces dimensionality and
potentially improves execution time as irrelevant features do not need
to be computed. As only relevant features can receive a non-zero
weight, generally weights tend to be more stable and sparse (for an
introduction to boosting algorithms, see Freund and Schapire (1997)).

For this multivariate pattern recognition analysis, we performed
Global Signal Regression in order to improve neuroanatomical specificity
of the positive correlations (Fox et al., 2009), but only considered con-
nectivity values larger than 0 to avoid spurious negative correlations
arising when the global mean signal is regressed out (Murphy et al.,
2009).

To ensure the generalizability of the classifier, we used leave-one-
out cross-validation (LOO-CV) to predict a participant's SVO. In each
LOO-CV run, data from all but one sample (S-1 of the S subjects) is
used to train the classifier. Subsequently, the categorization of the re-
maining subject, which has so far been unseen by the algorithm, is cal-
culated. This procedure is repeated S times, each time leaving out a
different subject, yielding each subject's categorization. Accuracy is
computed by dividing the number of correct classifications by the
total number of subjects. To protect the algorithmagainst possible insta-
bility of the accuracy estimate, we repeated this procedure 10 times
using the median accuracy of the 10 stability runs as an estimate of
true performance. To establish whether the observedmedian classifica-
tion accuracy is statistically significant, we ran each classifier 1000 times
with randomly permuted labels and counted the number of permuta-
tions which achieved higher median accuracy than the one observed
with the true labels. The p-value was then calculated by dividing this
number by 1000.

To quantify the contribution of each of the five functional systems,
we computed network-specific importance scores by taking the mean
of all feature importance scores over all cross-validation folds and stabil-
ity runs. Thereafter, we summed the mean importance scores for each
network separately. Generally, importance scores in this framework
represent ameasure of howmuch a feature (a functional connection be-
tween two regions in this case) contributed to classification perfor-
mance while taking into account the contributions of all other features.

Network attack tests

In addition to themultivariate analysis described above, we simulat-
ed a series of virtual lesions in each of the five functional systems, re-
spectively, and observed changes in network Global Efficiency for
prosocials and individualists. Whereas the multivariate analysis of
whole-brain connectivities described above shows that connections
within the cinguloopercular system are highly relevant for SVO predic-
tion, the network attack analysis builds on this result and aims to shed
light on the potentially different roles the cinguloopercular system
might play in individualists and prosocials. More specifically, based on
the results of the multivariate analysis, we hypothesized that the
cinguloopercular systemmight play a differential role for processing in-
formation throughout the brain.We opted for theGlobal Efficiencymet-
ric as it measures information transfer and provides a highly relevant
characterization of whole-brain network dynamics in a single measure.
Generally, Global Efficiency is used to infer the efficacy of information
exchange through a network by studying its topology (Latora and
Marchiori, 2001). It quantifies the extent to which nodes communicate
with distant nodes, and indicates the efficacy of information exchange
throughout the brain. Specifically, Global Efficiency was computed as
the average of inverse shortest path length based on the undirected,
weighted connection matrix (i.e. the matrix of Pearson correlations be-
tween all 142 regions) using the Brain Connectivity Toolbox (Rubinov
and Sporns, 2010).

As the network attack test was based on the five different functional
systems (frontoparietal, cinguloopercular, default mode network, sen-
sorimotor, and occipital) described in Dosenbach et al. (2007, 2010),
we used the connectivity threshold validated in these publications
(r = .20) for further analyses. By applying this threshold, only connec-
tivity values (i.e. Pearson correlations between all pairs of the 144 re-
gions) of r ≥ .20 were considered, setting all other values to 0.

The network attack analysis was conducted by first computing
Global Efficiency for the entire, undamaged network (full network) for
each participant. Then,we attacked each of the five networks separately
by setting all those connections to 0 which connect two regions of the
same network. For example, removing the cinguloopercular network
was done by setting to 0 all connections between two regions belonging
to this network. After each attack, we computed Global Efficiency yield-
ing – for each participant and network attacked – one Global Efficiency
value for the lesioned network.

As we were interested in potential differential effects of attacking a
network in prosocials and individualists, we computed a 2 × 2 Analysis
of Variance (ANOVA) with one between factor (individualists/
prosocials) and onewithin (repeatedmeasures) factor (full network/le-
sioned network) based on the Global Efficiency values separately for
each network. If the interaction term is significant (p b .05, corrected
for multiple comparisons as one ANOVA was computed for each net-
work under attack), this would indicate that attacking the respective
functional system has differential effects on Global Efficiency of the re-
maining network in prosocials compared to individualists.

In order to compute significance of the interaction term while
correcting for multiple comparisons (over the five respective systems),
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we ran the ANOVAwith permuted data 10,000 times for each functional
system. Based on the distribution of F-values for the interaction term
under permutation, we obtained the maximum F-value over the five
tests for each permutation. Corrected significance was then computed
by counting the number of times that the true F-value for the respective
test was smaller than the values of the maximum F-value distribution
under permutation over all tests and dividing this number by 10,000.
Fig. 3. Top panel: Visualization of the nodes for the fronto-parietal network (green), the
cinguloopercular network (blue), the default network (light blue), the sensorymotor net-
work (red), and the occipital network (yellow). Bottom panel:Median sum of tree ensem-
ble feature importance for each functional resting-state network (n = 29). Error bars
show range of median sum of tree ensemble feature importance over 10 replication
runs. Bar colors correspond to node colors in the upper panel.
Results

To test whether the resting-state functional connectome (Fig. 2)
encodes SVO, we used a multivariate pattern recognition algorithm to
predict individual SVO from resting-state functional connectivities of
standard, previously defined cortical regions of interest grouped in
five different functional systems: frontoparietal, cinguloopercular,
default mode network, sensorimotor, and occipital (Dosenbach et al.,
2007, 2010).

Avoiding circularity bias by using a leave-one-out cross-validation
procedure, we show that the tendency to behave in a prosocial or indi-
vidualistic manner can be predicted from the human functional resting-
state connectome (accuracy= 75%; p b .001). Next, we investigated the
role of each of the five functional systems by summing the feature im-
portance scores from the classifier for each functional system. Surpris-
ingly, we found that the classifier's performance was driven to a large
extent by connections of a single functional system: The sum of feature
importance scores within the cinguloopercular system far exceeded the
sum of importance scores in all other systems (Fig. 3, bottom panel). In
fact, importance scores from all other networks combined accounted for
only about 11% of the importance of cinguloopercular features alone.

Having established that SVO can be predicted on a single-subject
basis from resting-state functional connectivities – particularly driven
by connections within the cinguloopercular system – we then sought
to investigate by which mechanisms resting-state functional dynamics
associated with SVO might affect behavior across situations. To this
end, we conducted a series of virtual lesion tests assessing the changes
in global network efficiency when a targeted network attack (Joyce
et al., 2013) was performed on each of the five functional systems,
respectively. While individualists generally display higher Global
Efficiency (t(27) = 2.13; p = .033), the network attack test shows
that inflicting a virtual lesion comprising the cinguloopercular
network differentially affects Global Efficiency in individualists and
prosocials. Specifically, if the cinguloopercular network is removed,
Global Efficiency decreases more strongly in the individualists than in
the prosocials (F(1,27) = 6.64; p = .022, corrected). As this effect
might be driven by threshold-dependent changes in network density
Fig. 2. Average functional connectivity matrices (142 regions
(see vanWijk et al. (2010)), for details regarding the effects of network
density on graph-theoretical measures), we additionally conducted the
same analysis without thresholding the connectivity matrix. This
approach yielded comparable results (F(1,27) = 5.19; p = .027,
corrected). No such interaction effect is significant for any of the other
four functional systems.
of interest) for Prosocials (left) and Individualists (right).
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Discussion

In this study, we investigated whether the stable, context-
independent tendency to behave in a prosocial or individualistic manner
is encoded in the human functional resting-state connectome. To this
end, we first showed that SVO can, indeed, be decodedwith high accura-
cy from the pattern of functional network connectivities recorded at rest.
Secondly, we showed that among previously defined functional brain
systems (Dosenbach et al., 2007, 2010), the cinguloopercular network
provides unique information about a person's SVO classification as
prosocial or individualistic compared to all other functional systems. Re-
moving the cinguloopercular network artificially using a network lesion
approach decreased the efficacy of information exchange (i.e. Global
Efficiency) of the network more strongly in the individualists than in
the prosocials; meaning that the cinguloopercular network is particularly
relevant for cooperation-related information processing of individualists.

In summary, this evidence suggests that task-free network connec-
tivities of the cinguloopercular network form the neural basis of SVO.
This evidence sheds light on the neural mechanisms that underlie indi-
vidualists' and prosocials' habitual social decisions and shows that
reliance on the cinguloopercular network for task control predicts stable
cooperative behavior. More broadly, individual variability in the
cinguloopercular task-control network dynamics might also underlie
the recently discovered ‘cooperative phenotype’ (Peysakhovich et al.,
2014). While Peysakhovich et al. show that a domain general and tem-
porally stable tendency to cooperate exists, our results provide a plausi-
ble neurobiological mechanism by which this is implemented in the
human brain. Specifically, differential reliance on the cinguloopercular
cognitive control network might render cooperative behavior consis-
tent across tasks.

Generally, our finding that SVO can be predicted from the pattern of
functional resting-state network connectivities is in agreement with a
number of prior studies that found an association between resting-
state dynamics and personality traits (Adelstein et al., 2011; Dawes
et al., 2012; Hahn et al., 2012, 2013; Kunisato et al., 2011). Importantly,
the resting-state dynamics are thought to impose constraints on the
range of possible neural responses to stimulus input and task context,
thereby defining personalities (Basar, 1997; Başar, 1998; Kannurpatti
et al., 2012). According to our results, SVOmight affect behavior in a sim-
ilar fashion: Implemented in resting-state dynamics, it might determine
how the network responds in social situations to the range observed in
the phenotype (for a more detailed description and additional evidence
supporting this notion, see Hahn et al. (2012, 2013)).

The second finding regarding the essential contribution of the
cinguloopercular functional system may shed light on the question of
the neural mechanisms that underlie individualists' and prosocials' sta-
ble social decisions. The cinguloopercular functional system alongside
the frontoparietal system is essential for top-down control. Crucial in
the context of social value orientation, however, the cinguloopercular
functional systemoperates on a longer time scale than the frontoparietal
network, providing set initiation, stable set-maintenance and error
monitoring over the course of a task (Dosenbach et al., 2006, 2007,
2008). While the frontoparietal network monitors ongoing trial-by-
trial processes, the cinguloopercular functional system has been
shown to control goal-directed behavior over an entire task. In short,
one could speculate that differences in resting-state dynamics between
individualists and prosocialsmight entail different capabilities or prefer-
ences for strategic control behavior needed to achieve a certain goal. If
one were to encode stable behavioral tendencies for cooperation by al-
tering resting-state dynamics, constraining activation in this system
thus appears most effective as virtually all cognitive processes relevant
for rational, strategic decision making appear to converge here.

The same line of argument might also help to understand recent
functional Magnetic Resonance Imaging (fMRI) results showing that
SVO modulates neural activity in the Trust Game (van den Bos et al.,
2009). Specifically, prosocials not only reciprocated more than
individualists, but also showed higher activation in the insula and the
right temporal-parietal-junction when they defected. On the other
hand, individualists reciprocated less and showed more activation in
the insula and the right temporal-parietal-junction when they recipro-
cated. For the anterior cingulate cortex, this pattern was reversed. If,
as outlined above, resting-state dynamics impose constraints on the
range of possible neural responses to stimulus input and task context,
it could be assumed that the properties of resting-state dynamics
in these areas affect the extent to which the insula, the temporal–
parietal-junction and the anterior cingulate respond to requirements
of the Trust Game. Supporting this notion, the effects found in van den
Bos et al. (2009) all lay within the cinguloopercular functional system.

The central role of the cinguloopercular network is further substan-
tiated by the results of our virtual lesion tests which show that Global
Efficiency of the brain is decreased more in individualists than in
prosocials when this network was removed. Apparently, individualists
depend more on the cinguloopercular system relevant for goal-
directed behavior than prosocials to ensure optimal efficacy of informa-
tion exchange throughout the resting brain. These results elucidate a
possible neural mechanism which might explain not only why most
people's first response is to cooperate and that reflecting on one's be-
havior can hamper this impulse (Rand et al., 2012), but also why – for
a considerable number of individuals – the first impulse is non-
cooperative (Bogaert et al., 2008): The fact that individualists depend
more on the cinguloopercular system to ensure Global Efficiency
might prevent them from readily abandoning strong control processes,
making it more difficult for them to display prosocial instead of
economically rational behavior—a phenomenon commonly observed
in individualists (Bogaert et al., 2008). Presumably, the individualists
adopt the economically more rational strategy by default as their
cinguloopercular control network is more engaged. This suggests that
the behavior of prosocials and individualists converges under time pres-
sure (as shown in (Rand et al., 2012)) as the higher control processes
implemented through the cinguloopercular control system cannot be
provided fast enough. Since the individualists more heavily rely on the
cinguloopercular functional system, time pressure ought to affect their
behavior more strongly than the behavior of the prosocials.

Another line of work has viewed the cinguloopercular system not as
a control network, but as a “salience network” which integrates highly
processed sensory information with visceral, autonomic, and hedonic
markers (Seeley et al., 2007). From this point of view, onemight specu-
late that individualists – whom we found to rely more strongly on the
cinguloopercular system to ensure efficient communication throughout
the brain – integrate said markers more than the prosocials. Intuitively,
onemight argue that this should lead to economically less rational strat-
egies as autonomicmarkersmight interferewith high-level control pro-
cesses. While this would contradict the view that individualists rely
more strongly on rational strategy, another interpretation might be
that the cinguloopercular network not only receives those markers,
but actively processes them. From this point of view, individualists
might adopt more rational behavior precisely because they engage
their “salience network” which aids in filtering and controlling
bottom-up signals.

In addition to its explanatory value, our framework also allows for
the formulation of testable predictions: Based on our data, impairing
neural processing within the cinguloopercular network – using for ex-
ample Transcranial Magnetic Stimulation or paradigms involving spe-
cific cognitive load – will have little or no effect on the behavior of
prosocials (for whom network efficiency does not depend as strongly
on this system), but ought to enhance cooperative behavior in individ-
ualists as cinguloopercular control processes ought to be impaired. Fur-
thermore, we predict that decreasing cooperative behavior in the
prosocials cannot be achieved by interfering with cognitive control,
but – presumably – by altering a complex network relevant for the pro-
cessing of incentives and emotions as described in Declerck et al.
(2013). Based on our evidence, we propose to refine the general notion
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that a person's first impulse is cooperative (Rand et al., 2012) arguing
that it is, in fact, a lack of neural capacity for the control of goal-
directed behavior which drives prosocial acts.

Recent suggestions that individualists will recruit brain systems as-
sociated with cognitive control while prosocials will rely more on
their social cognition systems (Declerck et al., 2013) are also at least
partially consistent with our findings. Indeed we found that individual-
ists depend more on the cinguloopercular system relevant for goal-
directed behavior compared to prosocials to ensure optimal network
efficiency, but our results do not speak to the inverse claim that
prosocials rely more on social cognition systems. One possibility is
that “disengaging” the cinguloopercular control system is sufficient to
foster cooperative behavior in the group of prosocials.

In summary, we show that context-independent functional connec-
tivity of the cinguloopercular network serves as the large-scale neural
substrate of stable preferences for social outcomes. More generally,
our results are in line with the notion that stable differences of the
resting-state functional connectome are at the heart of individual differ-
ences in human behavior, specifically cooperation. Our results are in ac-
cordance with recent models of rest-task interaction (Hahn et al., 2012,
2013) and provide a unifying framework for the interpretation of recent
functional imaging (van den Bos et al., 2009) and behavioral studies
(Bogaert et al., 2008; Rand et al., 2012). Future investigations will
have to provide models directly linking stable behavioral tendencies,
resting-state dynamics, task-related activation and overt behavior.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.05.093.
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