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Wastewater treatment plants are major point sources ofd)patlutant emissions and advanced
wastewater treatment technologies can improve their remayecty. While abundant data on
individual advanced treatment technologies is available, there itedirknowledge regarding the
removal performance of ozonation combined with multiple post-treasmantd stand-alone

membrane bioreactors. This is especially true for the remowvaMifo andin vivo toxicity.

Therefore, we investigated the removal of 40 micropollutants and toxicitypligtacale ozonation
with four post-treatments: non-aerated and aerated granular tedticarbon and biological
filtration. In addition, two stand-alone membrane bioreactors fed witleatetd wastewater and one
MBR operating with ozonated partial flow recirculation were asedy Aqueous and extracted
samples were analysad vitro for (anti)estrogenic, (anti)androgenic and mutagenic effects. To
assessn vivo effects, the mudsnaPotamopyrgus antipodarum was exposed in an on-site flow-

through system.

Multiple in vitro effects were detected in conventionally treated wastewatlrding estrogenic

and anti-androgenic activity. Ozonation largely removed these ffetile anti-estrogenic and
mutagenic effects increased suggesting the formation of twaissformation products. These
effects were significantly reduced by granular activated caleorg more effective than biological
filtration. The membrane bioreactor performed similarly to theventional treatment while the

membrane bioreactor with ozonation had a comparable removal performance likeoozonati

Conventionally treated wastewater increased the growkh afitipodarum. Ozonation reduced the
reproduction indicating a potential formation of toxic transformation ptsdun the post-
treatments, these effects were compensated or remained wetffHoe effluents of the membrane

bioreactors induced reproductive toxicity.

Our results show that ozonation is effective in further reducingcitpxand micropollutant
concentrations. However, the formation of toxicity requires a podtriezd. Here, ozonation

coupled to granular activated carbon filtration seemed the most promising treptoteess.
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WIUTIUIPAI WASLSWALET USauIISiit PIAIS (VWYY IFS) alc iailly QUUITILS Ul LIS SHISSIUIT Ul
chemicals to aquatic ecosystems, including pollutants of emecgimgern (Loos et al. 2013) and
micropollutants (Schwarzenbach et al. 2006). WWTPs are known to incolypéteve different
micropollutants during conventional, biological wastewater treatmenty ascusing activated
sludge. Reasons for this are low biodegradability and/or high gotarichemicals (Knopp et al.
2016). Certain micropollutants have been detected throughout the watingating nanogram
per liter concentrations in drinking water (Benotti et al. 2009) ane lieeen characterised as
relevant risk to ecosystem integrity and drinking water regsu(Malaj et al. 2014). Chemical
contamination resulted in the establishment of environmental quadibdatds (EQS) in many
countries, including their integration into different (waste)waptdicies (e.g., European Parliament

and Council 2008, 2013) and the implementation of technical mitigation measures.

One major measure is the development and implementation of advanstnvatar treatment
(AWWT) technologies (Bui et al. 2016). Key AWWT include advanced oxidaprocesses
(AOPs, e.g., ozonation in combination with UV radiation), activated catleatments (e.g.,
granular activated carbon (GAC) or powdered activated carbon JPAC)pressure-driven
membranes (e.g., reverse osmosis). These technologies denednstdatitional removal of
(micro)pollutants from biologically treated wastewater. Howgwsch technology has certain
weaknesses such as the formation of potentially toxic transfiomaducts (TPs) during AOP or
an insufficient sorption of polar chemicals to activated carbonz@RE011). Accordingly, the
addition of a post-treatment (i.e., filtration after ozonation) andrngtid parameter settings (e.g.,
ozone (Q) doses and hydraulic retention times (HRTs)) have beenmreeaded (Volker et al.
2019). The present study investigates an innovative process combinatiloa fiorther reduction of
relevant (micro)pollutants and toxicity. The focus was the wegaf a municipal WWTP with
activated sludge treatment in Hesse, Germany with a pila-saination in combination with
subsequent non-aerated and aerated GAC/biofilter (BF) (Figure a@ha@an was chosen because

the chemical oxidation induces a transformation of (micro)pollutanted wastewater and, thus,

7
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processes and the resulting TPs can result in the formatiarvitfo andin vivo toxicity (Volker et
al. 2019). Therefore, ozonation was combined with GAC and biofilter aspai@sorechniques to
reduce these effects. This is novel because commonly GACidiltrest used as a post-treatment

technology for activated sludge treatments but not in combination with other AWthiidiogies.

Membrane bioreactors (MBRS) present a stand-alone technoldggatoraw wastewater, such as
hospital wastewater (Bui et al. 2016, Skouteris et al.2012, Verlitchii €010). The benefits of
using MBRs are amongst others that a final sedimentation isasated and that a higher solid
content in the MBR results in smaller construction volumes and higlhdge ages that may
positively affect micropollutant removal. Again, little is knowrgaeding their performance in
reducing toxicity (Gehrmann et al. 2018, Maletzt et al. 2013, Sretdar 2007). Thus, two MBRs
fed with untreated wastewater, one incorporating a partial flewiraulation of ozonated
wastewater, were examined (Figure 1) focusing on the combinationiddtion and biological
treatment. The aim was to test whether higher removal ratebecachieved with the lowest ozone
concentration. Such an approach has not yet been investigated. Another loénéfid
implementation of the recirculation concept was that it does notreegni expansion of existing

activated sludge treatment and, thus, lowers the operating costs.

As multiple AWWT technologies and combinations thereof are dlajl# is important to compare
their performance in removing chemicals and toxicity. So far, mastious studies investigated
only a single AWWT technology, often alone or less frequently mkioation with one post-
treatment (e.g., ozonation combined with sand filtration). In addition, stadies are performed at
different WWTPs complicating the comparison of technologicalopernce and efficiency of
multiple technologies. Studies comparing multiple process combinations atibetant are rather
scarce (Stalter et al. 2010, Volker et al. 2016). However, suchestage needed to assess the

benefits of conventional and AWWT technologies.
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complementary because the former allows for determining the remgwaboty compounds while
the latter enables the assessment of toxicity removal cdiysed overall mixture of chemicals
(Cao et al. 2009). This combination is particularly important becduserdgmoval of target
compounds does ngeer se correlate to toxicity removal (Magdeburg et al. 2014). Caseafgpec
combinations of bioassays and chemical analyses were thusasatgold standard’ (Ternes et al.

2017).

In the current study, we used multiplevitro bioassays and one vivo bioassay with the New
Zealand mudsnaPotamopyrgus antipodarum and quantified 28 representative micropollutants and
twelve standard wastewater parameters. The performanceutif scdle conventional biological
wastewater treatment (BT) combined with a subsequent pilot szatation (BT+@Q) followed by
GAC filtration or BF as well as two stand-alone MBRs, oneRvBIith partial flow ozonation
(MBR1, MBR1+G; and MBR2, respectively) were investigated. The evaluation éocos the
removal of target chemicals and toxicity compared to the aeth&ltidge treatment ¢OGAC, BF)

or raw wastewater (MBRS). In this context, three hypotheses tested: 1) Increasing the ozone
dose and HRT increases the removal of micropollutantsiandgtro toxicities; 2) Ozonation
generates toxic TPs that adversely affect differantitro and/orin vivo endpoints while a post-
treatment reduces these effects; 3) The MBRs remove cHermaiwa toxicity with a performance
comparable to an activated sludge treatment with a partial dlmmation further increasing the
performance. The aim of this work was to compare the toxicityn@ntbpollutant removal of the
multiple combinations of AWWT technologies implemented at the s&WéTP and provide

recommendations on which technologies perform best.
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2 M atarial and mathnde

2.1 Characterisation of the pilot WWTP with ozonation and post-treatments

The pilot plant investigated in this study received wastewaten & full-scale WWTP in South
Hesse, Germany (Knopp et al. 2016, Table S1). The latter has about gopadétion equivalents
and an average discharge of 6,400dhcomposed of70% municipal andB0% industrial sources.
The primary treatment (PT) consists of a mechanical saedrgrit removal (raw effluent). The
secondary treatment is a biological activated sludge proca#isdenitrification, nitrification and
phosphorus removal (chemical precipitation) and final clarifiershdrptiot WWTP the wastewater
from this secondary treatment was filtered with a micro-sf@@qum, Rodisc, Huber SE, Berching,
Germany) to further reduce total suspended solids before contateent in ozone system 1
(Figure 1, Table S2). This system (Xylem Water Solutions, H#rfGermany) consisted of two
0.113 ni bubble columns (height: 3.6 nfj: 0.2 m) connected in series and one 0.049 m
equalisation tank (height: 1.5 ml: 0.2 m). One bubble column was run in counter-current, the
other one was run in direct-current. The applied ozone dose was 18.({ngt22), the specific
ozone consumption was 0.93 g@DOC (n =22) and the hydraulic retention time (HRT) was
17.9 min (n = 22, Table S3). After full-scale ozonation the wastewateitreated in four parallel
post-treatments: two GAC filters (grain size 1.0-4.75 mm, inteurédce 1,200 ffig, Epibon A,
Donau Carbon, Frankfurt/Main, Germany) and two BFs (grain size 1-5AR1Y5-580, ARGEX
NV, Belgium) using extended clay as non-adsorptive carrier. Thetneastrents were identical in
dimension (height: 4.0 ni]: 0.19 m). One GAC filter and one BF were aerated with ambient air
(velocity: (4.0 m/h) while the other ones remained non-aerated. The empty bed tomtact all
filters ranged from 26.7 to 36.4 min with a filter velocity of about 3d38.96 m/h (Table S4)
achieving a net specific throughput of approximately 7,500-10,306°hed volume.

The two pilot-scale MBRs (BIO-CEL BC-10-10-PVC, MICRODYN-NAR) Wiesbaden,
Germany) were fed with mechanically treated raw wad@weom the full-scale WWTP (Figure 1,
Table S2). Both MBRs had a volume of about 1% each, and were operated in parallel. They

consisted of an aerated tank with a submerged membrane (0.04 umyanitriication reactor.
10
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151  Germany) consisting of one bubble column (height: 1.5Im0P.2 m, volume: 0.049 fhand an
152 equalisation tank (height: 0.9 niJ: 0.2 m, volume: 0.03 W The applied ozone dose was
153 6.78 g/ni (n = 5), the specific 0ozone consumption was 0.96/g DOC (n = 5) and the HRT was
154 26.1 min (n =5, Table S3). A defined fraction of the ozonated wastewaseresiaculated into
155  MBR1 with a recirculation rate of 2.02 (n =5). The sludge retenimoe was 55 days. MBR2
156  served as reference and its wastewater was neither ozonateecimoulated. Further technical
157  details and process parameters are described in the supplementary inforfizdties $1-S4).

158

159 2.2 Optimal ozone dose and hydraulic retention time

160  Prior to the on-site experiment wikth antipodarum (2.3), an experiment to determine the optimal
161 ozone dose and HRT was performed. Conventionally treated wastein@terthe municipal
162 WWTP was ozonated using four increasing ozone doses (0.18-0.3Lgiy DOC) at a
163  constant HRT of 12.6 min as well as a constant ozone dose of 0.53,g.§8 DOC using five
164 HRTSs (4.6-15.1 min). Three 24 h composite samples were taken from each adjusted ozone dose and
165 HRT. These wastewater samples were extracted (2.4) and analysedmiive bioassays (2.5).

166

167 2.3 0n-ditein vivo experiment with Potamopyrgus antipodarum

168 P. antipodarum was collected in the stream Lumda in Hesse, Germany (50°38'58164"
169 8°53'49.28" E) and acclimatised in the laboratory to culture medium at 1&ri¥@G light-dark-
170  regime of 16:8 h for four weeks. Animals with shell heights betv&4 and 4.0 mm were used for
171 the experiment (meahSD: 3.66+x 0.16 mm, n =50). The endpoints reproduction (number of
172 embryos), growth (shell height) and biomarkers for energy res@ovetein, lipid and glycogen
173  content) were analysed.

174  The on-site experiment was carried out in a continuous flow-througénsydirectly at the pilot
175 WWTP based on OECD guideline 242 (OECD 2016). Wastewater from nines pepresenting

176  different treatment stages and degrees were tested (Figuaétel)conventional BT, after ozone

11
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178  aerated BF, after aerated BF (BFRafter MBR1 and MBR2 and after ozone system 2 (MBRs)+O
179  The PT was not investigated because other studies reported on hightyngpbon exposure to raw
180  wastewater (Giebner et al. 2018, Smital et al. 2011).

181  Peristaltic pumps (Otto Huber, Bottingen, Germany) constantlyppdnthe undiluted wastewater
182  through polytetrafluoroethylene (PTFE) tubes from the nine treatstages to 10 L high-grade
183  stainless-steel reservoirs allowing residual ozone to gas out. Hrese reservoirs, smaller
184  peristaltic pumps (IPC 24, Ismatec, Wertheim-Mondfeld, Germawyped the wastewater
185  constantly through PTFE tubes into the exposure vessels containing the teishordae exposure
186  vessels were placed in random order in a tank filled with water nearly up to the passflows of
187 the exposure vessels. Water temperature was adjusted to 16°Causitgdting elements and an
188  external cooling unit (Julabo, Seelbach, Germany). A negative camsap (NC) with culture
189 medium (OECD 2016) and a positive control group (PC) with cultureumedontaining 25.0 ng/L
190 17 a-ethinylestradiol (EE) ran in parallel to the wastewater treatments in a-flawugh system as
191  well. Fresh culture medium of the NC and PC was prepared rgg(fathle S5). Each test vessel
192 (1 L) was filled with 600 mL medium or wastewater and had aldsfolume water exchange rate
193  per day. All vessels were aerated with ambient air filtered with a 0.2 porataby injection filter.

194  Twenty-five mudsnails were exposed in each replicate (fourcegpt per treatment group) and fed
195  every third day with 0.25 mg fine powdered fish feed (Tetra Ppgl)snail and day. After 28 days
196  of exposure under a light:dark regime of 16:8 h, the mudsnails weenfroZiquid nitrogen and
197 stored at —80°C until analysis. For the analyses, the mudsna#sdeé&osted, shell height was
198 measured to the nearest 0.1 mm and shells were cracked and yaesfidi/ed to determine the
199 total number of embryos in the brood pouch. In addition, aqueous grab samles\@ aind the
200 PC medium and aqueous 24 h composite samples and 5000-fold enriched sariaetiffefrent
201  wastewaters were testeéd vitro (see 2.4-2.5, Table S5). Protein, glycogen and lipid content as
202  biomarkers for energy reserves were determined as desanilied Supplementary Information
203 (S1.3, Figures S1-S3, Tables S6-S8). In brief, each mudsnail waseddgigccuracy £0.01 mg)

12
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turns per second using a grinding ball and a swing mill (MM 40GdReéEmbH, Haan, Germany).
The protein content was determined as described in Bradford (1976hg@hg and lipids were
separated as described by van Handel (1965) and determined usinghnohergnd vanillin

reactions (van Handel 1985a, b). The protein, glycogen and lipid conteht famples was
calculated in pg/mg mudsnail and then converted to an energgncaftthe lipid reserve in J/mg

mudsnail using the specific calorific value (Berg et al. 2007).

2.4 Wastewater sample preparation: Solid phase extraction (SPE)

The SPE column Telos C18/ENV, 500 mg+200 mg/6 mL (Kinesis Ltd., St. Neo#a} Britain)
was used for extracting the wastewater samples becaus&véhne optimal for the enrichment of
endocrine activity and mutagenicity from wastewater (Abbas. €049). The SPE columns were
conditioned consecutively with 1 x 2.0 mL heptane, 1 x 2.0 mL acetone, 3 x 2.0 mL metménol a
4 x 2.0 mL ultra-pure water. SPE was performed within 48 h after sangllection. Each
wastewater sample was collected as 24 h composite sample @%). After filtration with GF 6
filters (Whatman, GE Healthcare Life Sciences, ChalfontGies, England), 500 mL of each
sample were acidified to pH 2.5 with sulphuric acid (3.5 mol/L) diyelsfore enrichment and
extracted. The columns were dried under a&hd eluted with methanol and acetone at neutral
conditions (5 x 2.0 mL, respectively). After adding 100 puL dimethyplsstide (DMSO) each
methanol-acetone extract was concentrated to 100 pL final volume argdartle N stream. All
DMSO extracts (5,000-fold concentrated compared to the aqueous saepteytored at —20°C
until testing. A SPE blank (solvent control, SC) was prepared byatixty 500 mL ultra-pure
water. SPE blanks were identically prepared in parallel to tinehenent of samples from each

sampling campaign.

2.51n vitro bioassaysfor endocrine activities and mutagenicity

2.5.1 Recombinant yeast screensfor endocrine activities

13
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wastewater samples: Yeast Estrogen Screen (YES, humareestesgptoo (hERx)), Yeast Anti-
Estrogen Screen (YAES), Yeast Androgen Screen (YAS, human andregeptor (hAR)) and
Yeast Anti-Androgen Screen (YAAS) as first describedRnutledge and Sumpter (1996) and
Sohoni and Sumpter (1998). The YES and YAS are used to study compoundmgdineahER:
and hAR (receptor agonists) while the YAES and YAAS detect atasblocking the respective
receptors (antagonists). All bioassays were performed in 96mvetbtiter plates (f-form, VWR
Darmstadt, Germany) as previously described by Voélker €2@l6). In brief, aqueous samples
were analysed in a 0.63-fold final sample concentration (1.6-foldiah). SPE extracts were
analysed with a dilution factor of 480 resulting in a 10.4-fold fineda concentration (0.2% v/v
solvent concentration). All samples were analysed in eightegp. Negative controls (NC) using
ultra-pure water (aqueous samples), solvent controls with DMSOf¢8GPE extracts) and PCs
were analysed in each experiment (see Figures S4 and S5ldadsBdor details). The incubation
times at 30°C and 1200 rpm depended on the bioassay and were between 18 ares@kshv&e
not used if > 20% cytotoxicity compared to the NC/SC occurredtiRekandocrine activities were
calculated by normalising the reported gene activity to tG€SI (0%) and the maximum activity
of the reference compound (100%). A control without agonist was oséhlef antagonistic assays
to represent 100% receptor inhibition. Selected SPE extracts upattichose that were cytotoxic,
were tested with dilution factors of 1:2 to 1:16 to generate comtiemt-response-relationships

(Figure S6).

2.5.2 Recombinant bacterial test for mutagenicity (Ames fluctuation test)

The Ames fluctuation test (ISO DIN 11350, 2012) was used to identitaganic activity (i.e.,
irreversible DNA damages) with three genetically-modifiediss of the bacteriunsalmonella
typhimurium (TA98, TA100 and YG7108) as described by Magdeburg et al. (2014). In BRE
extracts were tested in a 10.4-fold final sample concentration (@/2%solvent). Mutagenic

reference compounds were used as PC (Table S9). A SC (DMS®)parellel to the extracts in

14
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counting the number of wells that shifted from purple (negativeglow (positive) the mutagenic

activity of the sample was determined photometrically.

2.6 Chemical analysis

Chemical analysis of wastewater samples was carried outparceeek (four times) during the
28 days on-site experiment (2.3). The selection criteria of the 28®mpaillutants were amongst
others their high polarity and no/low reduction by conventional and/or AV&¢hnologies, the
formation of stable TPs, their ecotoxicological relevance, ttieiection frequency in aqueous
environments and their use as wastewater tracer. Thus, an sralybese micropollutants and
their corresponding TPs was conducted by high performance liquid chronpipgiidPLC;
Thermo Dionex UltiMate 3000 RSLC, Thermo Fisher Scientific Mé]tham, USA) coupled via
an electrospray interface with a mass spectrometry (MSgm (MS/MS; Sciex Qtrap 5500, AB
Sciex, Framingham, USA) without sample enrichment (Seitz amdzéfNbacher 2017). The
injection volume was 100 ul. Ultrapure water (Purelab Ultra, Elgdle, Germany) was used for
dilution or as eluent. Furthermore, the LC/MS grade formic #Eidka, MS grade, 98%),
ammonium formate (Sigma-Aldrich, > 99.995%) and acetonitrile (Bath, LC-MS grade, >
99.95%) were used. Separation was achieved on a Kinetex 2.6 ym C18 ¢b0rn4.6 mm,
Phenomenex Inc., Torrance, USA) at a flow rate of 0.6 mL/min avjgthe-column (Security Guard
KIT KJO-4282, Phenomenex, Torrance, USA). Mass spectrometry wasedcaout in
positive/negative polarity switching electrospray ionization modee Timit of quantification
(LOQ) was 0.025 pg/L. The chemical analysis was done using the fojj@tandard methods DIN

38407-36 (2014) and DIN 38407-47 (2015).

2.7 Measurement of physical-chemical wastewater parameters
The following water parameters were determined directlthatpilot WWTP using standardised

cuvette tests (Hach Lange, Dusseldorf, Germany): chemicageoxgemand (COD), dissolved
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and spectral absorption coefficient at 254 nm (gAGTable S10). In addition, the following water
parameters were measured directly in the exposure vessetjuested by OECD (2016): pH,
conductivity, oxygen saturation and oxygen concentration using potentioraletticodes (Multi
340i/SET, WTW Weilheim, Germany), nitrite (NDI), nitrate (NQ-N), ammonium (NHN) and
total hardness using rapid test kits (Aquamerck, Merck, Darms@eitmany, Table S11).
Temperature was measured in the tank with two data loggeretoatied the temperature every 15

min.

2.8 Statistical analysis

Statistical analyses were performed using GraphPad Prigsioiveé.03, GraphPad Software, San
Diego, California, USA). Mortality data were analysed usinghéiis exact test. Gaussian
distribution was tested with the D’Agostino and Pearson omnibus noyrtesgit and homogeneity
of variances with the Bartlett's test. In case of a noths#éilibution and equal variances, significant
differences between the datasets were analysed using a prEeN@VA with Bonferroni’'s post-
test (glycogen and total energy content). If the datasets marenormally distributed, the
nonparametric Kruskal-Wallis test with Dunn’s post-test wasl iskell height, total number of
embryos and energy contents as protein and lipid). Significantetiffes between treatments were

marked with asterisks: p < 0.0%;, p < 0.01:% %, p < 0.001:% % *.
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305 3.1 Optimal ozone dose and hydraulic retention time

306 3.1.1 Optimal ozone dose

307 The mean estrogenic and anti-estrogenic activity of thevB3 7.31 £ 0.21% and 61.7 + 0.55%,
308 respectively. With increasing ozone dose, the estrogenic activityeatked by 94.0% to
309 0.44 £0.07% at the highest ozone dose whereas the anti-estrogenty awtireiased by 29.1% to
310 79.6 £1.37% (Figure 2A, Table S12). No androgenic activity was detectidx iBT and at all
311  ozone doses (Figure 2B). In contrast, the anti-androgenic activitg BT was 76.1 £ 0.72%. With
312 increasing ozone dose, the anti-androgenic activity decreas&®.b% to 49.3 + 0.73% at the
313  highest ozone dose (Figure 2B, Table S12).

314  None of the treatments was mutagenic in the Ames TA98 stregur@2C). However, the Ames
315 TA100 strain indicated a potential mutagenicity in the BT (21.2 =+ 2.59%ghwimcreased by
316  67.1% with increasing ozone dose to maximal 35.4 + 2.10% (Table S12).

317

318 3.1.2 Optimal hydraulic retention time

319 The mean estrogenic activity of the BT was 3.58 + 0.12%. Ozonationeckdhe estrogenic
320 activity by 81.3 to 95.7% independent of the HRT (Figure 2D). The mearsirdgenic activity of
321 the BT was 71.0 £0.45% and decreased by 12.9% at the lowest HRT to 61.9 + 0.4h%. W
322 increasing HRTs the anti-estrogenic activity first incrdasefore it remained constant within the
323  same range like the BT (Table S13). Again, no androgenic actiagydetected in the BT and at all
324 tested HRTs (Figure 2E). However, the anti-androgenic activitheoBT was 70.9 + 0.80% and
325 decreased by 43.6% to 39.9 + 2.21% at the lowest HRT. With increaBimg, kthe anti-androgenic
326  activity first increased to 60.7 £ 0.88% before it decreased to 40.7 + 0.93¢hest HRT (—42.6%
327 compared to the BT, Table S13).

328 Again, none of the treatments was mutagenic in the Ames TA98 ftigure 2F). In contrast, the
329 Ames TA100 indicated potential mutagenicity in the BT (21.5 £ 1.64%). dffest increased by

330 93.5% at higher HRTs to maximal 41.7 = 3.18% (Table S13).
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3.2 On-gitein vivo experiment with Potamopyrgus antipodarum

3.2.1 Mortality

The mortality ofP. antipodarum at the end of the 28 days of exposure was low in all controls and
the treatment groups. The highest mortality was observed inGH8.B+ 1.92%) and in the non-
aerated GAC filter (3.& 3.0%, Table S14). The mortality in the NC was 100%. Thus, the

validity criteria of the OECD guideline (maximal 20% mortality) was (@CD 2016).

3.2.2 Growth and reproduction

At the end of the experiment, the shell heights of the mudsnale waximal in the BT
(3.98+ 0.23 mm) and differed slightly but significantly €@©.05) from the NC (3.82 0.17, Figure

3A, Table S14)P. antipodarum exposed to water from all AWWTs did not grow less compared to
the BT except those exposed to effluent from MBR2 (2.8421, p< 0.05).

Exposure to 25 ng/L EHised as PC (27#5.36 embryos per female) induced the reproduction by
17.0% compared to NC (23t7/5.27 embryos per female, Figure 3B, Table S14). The total number
of embryos exposed to the BT (2&5.00) was on the same level as the PC but not significantly
higher than in the NC. Ozonation led to a significant reduction (—21.920,@l1) in the number of
embryos per female (211#95.94) compared to the BT. The reproduction in the subsequent
treatments (GAC, GAL BF, BR) was below the level of the BT. The number of embryos in
animals from the aerated treatments differed significaf@®fG,: —18.7%, p< 0.05 and BE —
24.0%, p< 0.001) and were lower than the non-aerated treatments (GAC: —2.07% and BF: —10.7%).
The exposure to wastewater after the MBRs caused signifreghictions (MBR1: —29.9%,
p<0.01; MBR1+Q: —19.6%, p < 0.01; MBR2: -56.0%, p < 0.001) in the total number of embryos

compared to BT.

3.2.3 Biomarkersfor energy reserves (glycogen, protein and lipid content)
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non-aerated BF (0.310.07 J/mg tissue, Figure 4A, Table S15). The lowest protein contnt w
found in the MBR2 (0.23 0.08 J/mg). However, no significant differences were detected.

The glycogen content was highest (+29.2%, p < 0.05, Figure 4B, TablerSabd)mals from the
non-aerated GAC filter (0.24 0.08 J/mg) and significantly higher compared to the BT (8.09D4
J/mg) and lowest iR. antipodarum from the MBR1 (0.1% 0.05 J/mg).

The lipid contents of the mudsnails in the PC (&®642 J/mg) and BT (0.960.73 J/mg) were
significantly lower (—39.8%, p < 0.01 and -40.1%, p < 0.05) compared to the NC:(2.59 J/mg,
Figure 4C, Table S15). The highest lipid content was determinadimals from the non-aerated
BF (2.05+ 0.31 J/mg) and differed together with aerated GAC filter rimeat (1.52t 0.51 J/mg)
significantly from the BT (+115%, p < 0.001 and +59.7%;, @05, respectively).

The total energy content in mudsnails from the PC (2.843 J/mg) and the BT (1.380.77
Jimg) were lowest with significant differences (-30.6%, p <0.001 and —-33224).001)
compared to the NC (2.670.56 J/mg, Figure 4D, Table S16). The total energy content of the
mudsnails exposed to water from the AWWT were higher than inBfhewith significant
differences in the GAL(1.94+ 0.36 J/mg, +40.2%, p < 0.01), the BF (245@.35 J/mg, +83.7%,

p <0.001) and BH1.87+ 0.47 J/mg, +35.2%, p < 0.05).

3.2.41n vitro bioassaysfor endocrine and mutagenic activity

The extracts of the PT were cytotoxic iniallitro assays (Figures 6, 7) and, thus, not considered.

Recombinant yeast screensfor endocrine activity

The aqueous samples of the PC spiked with 25 ng/i.Hald a mean estrogenic activity of 28.2
+ 0.47 ng ethinylestradiol-equivalents/L that corresponds to a receptor activh#26.1+ 0.78%.

The aqueous PT samples were neither estrogenic (1.60+0.27%) nor andgeancr

(1.03 £ 0.41%) but induced a high anti-estrogenic (95.0 £ 0.71%) and androgenic (38.2 £ 2.30%)
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384 reduced to 57.4 £ 2.83% (—39.6%) and 0.06 = 0.03% (—99.8%), respectively. The meamendocr
385 activities in all AWWT (BT+Q, GAC, GAG, BF and BE) and MBR systems (MBR1, MBR1+0O
386 and MBR2) were on a comparable level to BT.

387 The SPE extracts of the BT indicated a mean estrogen aaifvit§.9+ 1.60% (Figure 5A, Table
388  S18). Ozonation reduced the estrogenic activity by 96.5% to+005P1%. The following GAC
389 filter and BF showed a reduction of the estrogen activity coeaptn the BT by 95.1 to 95.9% as
390 well. For the MBR systems this reduction ranged between 81.7% BR2Mand 97.4% in
391 MBR1+0:;.

392 Ozonation of the BT increased the anti-estrogenic activity of dkiacts by 163% from
393 14.1+ 1.53% to 37.2 1.43% (Figure 5B, Table S18). Post-filtration reduced this atrgenic
394  activity by 5.03 to 49.9% but the activity was still higher compacethé BT (+31.8% (GAC),
395 +65.7% (GAG), +150% (BF) and +144% (Bf. The wastewater of the MBR1, MBR1+@nd
396 MBR2 indicated a higher anti-estrogen activity compared to thevl8T an increase by 162, 93.3
397 and 201%, respectively and a maximal activity of 422695% in MBR2.

398 The mean androgenic activity (Figure 5C, Table S18) of the Baag was 1.76 0.31% and was
399 reduced by 10.1 to 84.0% in all AWWT (BT40OGAC, GAG, BF and BE) and MBR systems
400 (MBR1, MBR1+G; and MBR2).

401 A mean anti-androgenic activity (Figure 5D, Table S18) of Z2105% was determined in the
402  SPE extracts of the BT. Compared to this treatment the AWBTF#Qs, GAC, GAG, BF and BE)
403 and MBR systems (MBR1, MBR1+nd MBR2) reduced the anti-androgenic activity by 7.68 to
404  72.6%.

405

406  Amesfluctuation test for mutagenicity

407  No mutagenic activity was detectable in the BT in the Amesnsty G7108 (Figure 6, Table S18).

408 Ozonation of the BT induced a high mutagenicity of @31229%. Water treated with GAC and

409 GAC, was not mutagenic in contrast to the BF and, Bfh 50.8+ 2.29% and 52.% 4.87%,
20
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411  mutagenicity of 67.5% 4.62%.

412

413 3.3 Chemical analysis

414  The chemical analysis was conducted in parallel to the ecotogical investigations and included
415 28 micropollutants mainly belonging to the group of pharmaceuticals aschadio-opaque
416  substances, anticonvulsants, antibiotics (including metabolites suclcabamazepine, diclofenac
417  or ibuprofen) as well as nutrition-related chemicals (cafjeimerbicides (mecoprop) and industrial
418 chemicals (benzotriazole and tolyltriazole). In the PT, caffeies detected at the highest
419 concentration of 162 + 23.2 ug/L followed by carboxy-ibuprofen (74.7 £ 6.27 pg/L), 2-tyydrox
420 ibuprofen (47.3 £4.97 ug/L) and 1H-benzotriazole (25.0 £ 0.71 pug/L). The concentratidmes of t
421 other substances were between 0.025and 14.4 ug/L (Table S19). The BTdreatace
422  concentrations of 15 out of 28 chemicals by more than 50% (highestioegu®8.8% for caffeine
423  and carboxy-ibuprofen). For nine chemicals, the reduction was low (< —~Es¥ofarbamazepine
424  and carboxy-acyclovir a concentration increase was detected.

425  Ozonation led to a further reduction of 21 substances ranging from —{ibd&midol) and —99.1%
426  (carboxy-acyclovir)) compared to the BT (Figure 7A, Table S19). dtwcentrations of 18
427 substances decreased by more than 50%. For another three compoundsnctrations
428 decreased by between 10 and 50%. Two TPs (3-hydroxy-ibuprofen anddaaioxide)
429 indicated higher concentrations in the BTz#@an in the BT.

430 The post-treatments further reduced the concentrations of mget substances (Figures S9 and
431  S10, Tables S19 and S20). For certain compounds for which ozonation didhieoeae complete
432  removal (e.qg., 3-hydroxy-ibuprofen, diclofenac, sulfamethoxazole), aificeidn led to an overall
433  removal of 75.0 to 90.7% compared to the BE+Bor a small set of compounds (2-hydroxy-
434  ibuprofen, 4-hydroxy-1H-benzotriazole, carboxy-acyclovir, paracetanaoliyyoderate additional
435 removal between 31.1 and 42.9% occurred in the GAC filters and BFs cairipatee BT+Q.
436 GAC filters showed a higher removal rate for seven compounds inclddikigenzotrialzole,
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Certain compounds such as caffeine or mecoprop could however not be feniozed by the
GAC filters and BFs compared to the BTstO

MBR1 and MBR2 had slightly lower removal efficacies regardimg 28 chemicals than the BT
(Figures 7B and S11, Tables S20-S21). The ozonation increased the reminaMBR1 with
efficiencies comparable to the BT+(However, the concentration of carboxy-acyclovir increased
in the BT (+367%), MBR1 and MBR2 (+146 and +343%, respectively) as ageMBR1+Q
(+39.3%).

The results for the water parameters can be found in the Suppdeynbriormation (S2.4, Tables

S22-529).
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4.1 Optimal ozone dose and hydraulic retention time

4.1.1 Optimal ozone dose

In line with previous research, an additional ozonation of conventionalettewastewater
efficiently reduced the estrogenic activity (Volker et al. 2019)e Temoval of estrogenicity
increased with ozone dose and dose3.44 g Q/g DOC were most effective (Figure 2A, supports
hypothesis 1). Interestingly, we observed a marked increase a@nthestrogenic activity with
higher ozone dosage (falsifies hypothesis 1), a phenomenon that masepeded previously
(Giebner et al. 2018, Gehrmann et al. 2018, Itzel et al. 2020, Stakér2611). One potential
reason is the removal of estrogens masking the anti-estrogg(fingitp et al. 2014, Leusch et al.
2017, Ma et al. 2005, Rao et al. 2014) or the formation of anti-estro@®s during ozonation

(compare hypothesis 2, Knoop et al. 2018).

In contrast to previous studies that reported an effective removahtondrogenic activity in
biologically treated (Rao et al. 2014) and ozonated (Stalter 204l) wastewater, we detected a
high anti-androgenicity in the BT as well as the BE+amples (Figure 2B) that was not fully
removed by the applied ozone doses. Treatment with the highest dose @.gkigig DOC) led
to a 35.1% reduction. This indicated the presence of relatively stabilandrogenic substances

(Itzel et al. 2020).

The Ames TA100 was more suitable for detecting mutagenicity tte Ames TA98 (Figure 2C).
Again, this is in line with previous research (Volker et al. 2019). igagenicity (TA100)

increased at higher ozone doses indicating the formation of mutagesiddigher mutagenicity in
ozonated wastewater was previously reported (Chen et al. 2017, Géelahe2018, Jia et al. 2015,
Magdeburg et al. 2014). These findings underline the importance ofnmaptang ozonation post-

treatments (4.4).

With regards to determining the optimal ozone dose, it becomes obkaius balance needs to be
found between the removal of estrogenic and anti-androgenic compounds onethand the
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DOC might represent a good compromise.

4.1.2 Optimal hydraulic retention time

The experiment with a high ozone dose and different HRTs supportedhiés of the previous
experiment: The mean estrogenic activity was reduced in ozowastdwater compared to the BT
for all HRTs (Figure 2D). The anti-estrogenic activity deseebat the lowest HRT but remained at
the level of BT at higher HRTs. The results support the ideageharation of anti-estrogenic TPs

during ozonation because the estrogenic activity was on a comparable low |#vdRatsa

Again, the anti-androgenic activity was high in BT (Figure 2E) and was redogst at the shortest
and longest HRT. The lower removal in the intermediate HRTs tnbghexplained by anti-

androgenic TPs (hypothesis 2). The mutagenicity detected inntes AA100 in the BT increased
at particular longer HRTs (Figure 2F). This observationh&rrtsubstantiates the formation of

mutagenic TPs during ozonation (hypothesis 2).

4.2 In vivo effectsin Potamopyrgus antipodarum

4.2.1 Growth and reproduction

P. antipodarum were larger when exposed to water from BT compared to the NQr¢F3A)
which may be the result of a better nutrient supply in the BT gontaadditional organic matter.
Furthermore, a significantly lower shell height was deteatetheé MBR2 compared to the BT

which may indicate a lower removal of general toxicity in MBR2.

The reproduction oP. antipodarum was increased in the BT and the PC (Figure 3B) compared to
the NC. One reason for this could be a better nutrition (compare )abdeee, several studies
showed that gastropods with a better nutrient supply produced a highkemaf eggs (Augusto et
al. 2012, Keas & Esch 1997, Ter Maat et al. 2007). Another reason might q@esence of

residual endocrine disrupting substances (Duft et al. 2007, Stalér2011, Stange et al. 2012) in

24



AQQ

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

wiactoawatar Tha Adatartomlvitrn actrananie activityv in tha RT (Einnira KAY nn tha hiiman actrnnan

receptor may tentatively point towards such chemicals.

The fecundity index (FI, Ladewig et al. 2006, Schneider et al. 2015)used to further elaborate
on these hypotheses. The Fl is calculated as the ratio of naihderbryos and the shell height of
each individual. The FI of the PC and BT were not significantlipdnigompared to the NC (Figure
S7, Table S14) which illustrates that the mudsnails carried a haumder of embryos according
to their size. Hence, the higher number of embryos in the BT andTtloe®d not definitely be

related to a higher shell height due to a better nutrient supply or to the detécigenes activity.

The reproduction decreased in snails exposed to ozonated wast@Vat€g) and to water from

the post-treatments GACBF, as well as from MBR1, MBR1+0Oand MBR2. Here, the
significantly decreased FI indicated a reproductive toxicitypamed to the BT (Figure S7, Table
S14). The reproductive toxicity could be induced by unspecific toxaithe ozonated wastewater
and/or toxic TPs (Volker et al. 2019). In a study by Giebner ef2all8) the total number of
embryos ofP. antipodarum also decreased after the AWWT ozonation and activated carbon
treatment. The authors assumed that the decreased reproducticausess lzy a general toxicity of
the wastewater. Interestingly, the reproductive toxicity inilsrexposed to water from MBR2

implies that it does not remove toxicity as good as a conventional BT (falsyipothesis 3).

4.2.2 Biomarkersfor energy reserves (glycogen, protein and lipid content)

Glycogen, protein and lipid content have not been previously analy$&damipodarum exposed

to wastewater. They are of interest because the energy cbhateah influence on reproduction of
gastropods (Gust et al. 2011). In the present study, differences inrkéonsensitivity were
observed in the order of lipid > glycogen > protein content alfteretixposure to the different
wastewaters (Figure 4). Gust et al (2011) reported that ggycwas the preferred energy invested
in the reproduction oP. antipodarum followed by lipids. In this study, exposure to differently

treated wastewater did not affect the protein content but theggpnccontent of the mudsnails
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by exposure to water from BT and GAGor BT, this does not support our hypothesis of a better
nutrition. For GAG, this implies an energy depletion which might have been resultadawer
reproduction. In snails exposed to water from the BF, the lipid comt@stincreased but did not
result in a higher reproduction. The total energy content mirhatspicture because lipids are the

dominant energy storage kh antipodarum.

4.2.3 In vitro endocrine activity and mutagenicity

The aqueous samples taken in parallel toith@ivo experiment did not induce any relevant
estrogenic and anti-androgenic activities in any sample (Fig8ird&ble S17). Accordingly, the
removal capacity could not be evaluated for these two paramigtesntrast, high anti-estrogenic
and androgenic activities were detected in PT. The androgenwtyaetas almost completely
removed in the BT whereas the anti-estrogenic activity wasasitaly reduced but remained on a
relatively high level throughout all AWWT technologies (Figure S&blé S17). Hence, the
cleaning capacity of the BT seemed not sufficient in remaothadatter, which has been suggested
in earlier studies on the present (Abbas et al. 2019) and on otivatetsludge treatments (Harth

et al. 2018, lhara et al. 2014, Rao et al. 2014, Tang et al. 2014).

Regarding the 10.4-fold concentrated extracts, the estrogenictyadgtivthe BT was almost
completely removed by ozonation (Figures 6, Table S18). Accordinglgdditional removal by
the post-treatments could not be assessed. In contrast, the trage®eis activity increased
markedly in BT+Q. The BF and BEdid not reduce the anti-estrogenic activity whereas GAC and
GAC, were more effective. One explanation might be that the adived&ebon is better in

adsorbing more polar ozonation TPs than the more non-polar BF.

Ozonation led to reduction of the anti-androgenic activity but it remdaon a relatively high level
compared to previous reports (Gehrmann et al. 2018, ltzel et al. 2020)imgliaa incomplete

oxidative removal of anti-androgenic compounds. Subsequent filtration indetgpleduced this
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the result for the anti-estrogenic activity.

Compared to the BT, the MBRs were much more effective in red@strggenic (MBR1 and 2)
and anti-androgenic activity (MBR1) whereas they releaseicéhrhigher anti-estrogenic activity.
An almost total reduction of estrogenic activity and simultaneous incoéasi-estrogenic activity
in the MBR1+Q is consistent with the observation for the BEHOompare above) indicating an

incomplete removal of substances with anti-estrogenic activity.

The results of the Ames test with the strain YG7108 (Figureuppat previous hypotheses on
mutagenic TPs generated during ozonation (BJa@d MBR1+Q). Interestingly, water treated
with BF was also mutagenic. Here, the causes remain unknown. AgaiBAIC treatments did not
generate mutagenic activity. These results again indicatéghar performance of the GAC filters

compared to the BFs.

4.3 Removal of micropollutants

Twenty-eight micropollutants and twelve wastewater parameters analysed in parallel to the
on-site experiment witl. antipodarum to evaluate the performance of the AWWT technologies.
The BT effectively reduced the COD, DOC, NN, P and SAGss These parameters were only
minimally affected by ozonation, except for the SACGAC and BF achieved an additional
reduction of the COD, DOC and SAds whereby GAC was more effective than BF (Tables S22—

S29).

The MBR systems decreased most of these parameters, éxcéypDs-N, NH,-N and Ry at
comparable or higher effectivity than the BT. MBR1 had a slighitijrer effectivity than MBR2,
which may have been the result of the recirculated ozonatedweastefrom the MBR1+@
Generally, the MBR1+©only showed a comparable (SAG or better (COD, DOC, N&N)

removal than the BT+§£hypothesis 3).
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treatment degree. Carboxy-acyclovir was for instance found aéhapncentration in the BT and
MBRs compared to the PT because it is formed from acyclovir glbiwiogical treatment (Prasse
et al. 2012). Ozonation decreases the concentration of carboxy-acyatbvan additional removal
in the subsequent post-treatments. In general, ozonation resulted initaonalddcemoval of target
compounds compared to the conventional treatment (Figure 7) with ¢ceetex of 3-hydroxy-
ibuprofen, 4-hydroxy-1H-benzotriazol, 4-nitro-sulfmethoxazole, carboxy-dfapr caffeine,
paracetamol and mecoprop. This is in line with a multitude of prewwtudies demonstrating the

performance of ozone treatments in further reducing micropollutants (Prass2Cd5).

A post-treatment with GAC further reduced the concentrations ofpconus detected after
ozonation (Table S19). In most cases, this reduction was to levels tedadvDOQ for both, non-
aerated and aerated GAC filtration. This demonstrates that a combination dfemrzand activated
carbon post-treatments is very effective in removing micropollsitartte two BF systems also
reduced the concentrations of micropollutants further with no markededitie between non-
aerated and aerated BF. They were, however, less effectieenmving some compounds (e.g.,

iopromide) than the GAC systems (Table S20).

The MBR systems had a very similar performance in removingettachemicals like the
conventional activated sludge treatment (Figure 7). This is imlitreprevious studies (Bertanza et
al. 2017, Maletz et al. 2013). The combination of an MBR with ozonation furtimoved the
reduction of recalcitrant chemicals (Table S20). Accordingly, MIBBn be a suitable alternative

for a conventional treatment in specific situations (e.g., lack of space).

4.4 What isthe optimal wastewater treatment from an ecotoxicological point of view?
Residual ecotoxicological effects and micropollutants were detent the present full-scale
WWTP using an activated sludge treatment. This highlights thefoeatternative and/or AWWT

treatment options and/or optimisation of the activated sludgemeeat Here, ozonation was
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603  activity, anti-androgenic activity and mutagenicity. We also obseaseeduction in growth and

604  reproduction oP. antipodarum exposed on-site to ozonated wastewater. These findings support the
605 idea that ozonation is effective in removing some specific toxicities vitgknerates toxic TPs that

606 induce other adverse effects (Volker et al. 2019, hypothesis 2). dhvaghy, a post-treatment is

607 needed to reduce these effects. Here, GAC filtration was efteetive than the BFs in reducing

608 the residual/generatad vitro toxicity. The same was true for some micropollutants. No specif
609 differences were observed for aerated versus non-aerated sysiemll post-treatments were fed
610 with the same wastewater, we conclude that a GAC post-treatisereferable to BF when

611 improving the toxicity/chemical removal of ozonated wastewatewever, other considerations

612 (e.g., energy demand, available space, carbon footprint) need to be nékemceount when

613 deciding on a suitable post-treatment.

614 MBR systems can be a promising alternative to convention&bsati sludge processes (Bui et al.
615 2016). In the present study, MBR1 but not MBR2 had a similar removalnpence for toxicity
616  and micropollutants like the BT (hypothesis 3). Raw wastewatetten MBR2 induced a marked
617  reproductive toxicity inP. antipodarum. Thus, a combination with ozonation (MBR1) might be
618 preferable. However, the latter treatment generated a highgenicity which was removed by
619 recirculating the ozonated water in the MBR. Accordingly, a combinaif MBR and ozonation
620 technologies might represent a promising option for specific gifgtsuch as little available space

621  for WWTP in urban settings.

622
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To determine optimal ozone doses and HRTs, maximum removal rategeaadtion oin
vitro toxicity have to be balanced. An ozone dose of 0.33 fg ®OC and an HRT of 12.6 min

seemed optimal.

While ozonation was effective in further reducing toxicity andropollutants it also formed
toxic TPs. Thus, post-treatment is needed. Activated carbon and balqupst-filtration

(further) reduced most of the effect with GAC being more effective than BF.

MBR systems as alternatives to an activated sludge treainege similarly effective like the
BT and even performed better (e.g., removal of estrogenicity). NlBRwproved the removal
performance but also generated mutagenicity. The latter wlase®@ by recirculation to the

MBR which might represent a promising option.

A significant anti-estrogenic activity remained in all AWW which should be further

investigated.

Conventionally treated wastewater affected growth and reproduaftiBnanti podarum (better
nutrient supply or exposure of estrogenic chemicals). Ozonation reduceepttoeluction
indicating a potential formation of toxic TPs. In the post-treatsnghese effects were
compensated or remained unaffected. All MBR treatments induced reproductoisy toxi

Ozonation of conventionally treated wastewater reduced micropalutand improved
wastewater parameters. Post-treatment with GAC/BF resultan additional reduction. MBRs

were comparable to BT while MBR+Was similarly effective like BT+¢)

For an optimised effect-based assessment of wastewatery qpfatibnventional and AWWT
sensitive and environmentally relevantvitro andin vivo endpoints as well as an adapted
chemical analysis are needed. In addition, further parametgrs éeergy demand, carbon
emission), alternative technical options (e.g., optimising activataedge treatments) and
socioeconomic factors (i.e., source control) have to be considered.
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Figure 1: Process design of the WWTP and AWWT. Process design of the municipal
wastewater treatment plant (WWTP) and the pilot-scale advanced wastewater treatment
technologies (AWWT). Sampling points are marked with black dots. PT: after primary
treatment, BT: after conventional biological treatment, BT+O3: biological treatment after
ozonation, GAC: non-aerated granular activated carbon, GACa: granular activated carbon
aerated with ambient air, BF: non-aerated biofilter, BFa: biofilter aerated with ambient air,

MBR1/2: membrane bioreactor 1/2, MBR1+0O3: membrane bioreactor 1 after ozonation.



Estrogenic activity [%], mean + SEM }>

Estrogenic activity [%], mean + SEM ©O

10 1 1 1 1 1 90
[ estrogenic activity
[ anti-estrogenic activity
8 4
T - 80
6 -
-70
4
- 60
2 -
0 - 50
wlo O, 0. 0. 33 0. 44 0. 51
Ozone dose [g O 3 5pplica/9 DOC]
10 1 1 1 1 1 1 90
[ estrogenic activity
@ anti-estrogenic activity
8 1
- 80
6+
-70
44
- 60
2 -
0- le ﬁ - 50
15 1

w/oo3 46 76 125

Hydraulic retention time (HRT) [min]

IN3S F ueaw ‘[%,] A3IAl3oe o1uaboaysa-3uy

IS F ueaw ‘[¢,] A31An30e DjUBbOIISe-IJUY

Androgenic activity [%], mean + SEM @

Androgenic activity [%], mean + SEM M

5 1 1 1 1 1 90
[ androgenic activity
[ anti-androgenic activity
- 80
4
-70
34
- 60
2
- 50
1 l-4o
0- -30
wloO; 0. 18 0. 33 0. 44 0.5
Ozone dose [g O3 ;ppiica/9 DOC]
5 1 1 1 1 1 1 90
[ androgenic activity
[ anti-androgenic activity
" - 80
-70
34
- 60
2
- 50
" Ill I L 40
0- |1| -30
onO346 76 10 125 151

Hydraulic retention time (HRT) [min]

NS F ueaw ‘[¢,] AyAnoe oluaboupue-nuy

NS F ueaw ‘[9,] Ayanoe oluaboupue-iuy

Mutagenicity Ames
TA98/TA100 [%], mean + SEM

Mutagenicity Ames
TA98/TA100 [%], mean + SEM

D
o
1

(2
o
1

N
o
1

10

0-

50

n

w/oO; 0.18

[ Ames TA98
E Ames TA100

0. 33 0. 44 0. 51
Ozone dose [g O 3 5plica/9 DOC]

40

30

3 Ames TA98
= Ames TA100

M

125 151

wioO, 46 7.6

Hydraulic retention time (HRT) [min]



Figure 2: Optimal ozone dose and hydraulic retention time. Estrogenic and anti-estrogenic
activity (A, D), androgenic and anti-androgenic activity (B, E) and mutagenicity (C, F) in %
(mean + SEM) of conventional biological treated wastewater (without ozone; A, B: n = 93—
96; D, E: n=117-120; C, F: n=12-15) and ozonated wastewater (three SPE extracts per
ozone dose (A, B: n=16-24, C: n=23) and hydraulic retention time (D, E: n=21-24; F:
n=3)). A, B, C: multiple ozone dose (0.18—0.51 g O3, appiieda/g DOC) at a constant hydraulic
retention time of 12.6 min; D, E, F: multiple hydraulic retention times (4.6-15.1 min) at a

constant ozone dose of 0.53 g Oz, appiiea/g DOC. w/0 O3: without ozone.
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Figure 3: Growth and reproduction. Size (A) and reproduction (B) of Potamopyrgus
antipodarum after 28 days of exposure to the negative control (NC), the positive control (PC),
the conventional biological treatment (BT) and the eight advanced treatment technologies.
BT+Os: after ozone system 1, GAC: after non-aerated granular activated carbon treatment,
GAC,: after aerated granular activated carbon treatment, BF: after non-aerated biofilter
treatment, BFa: after aerated biofilter treatment, MBR1/2: after membrane bioreactor 1/2,
MBR1+0Q3: after ozone system 2. Significant differences to BT are indicated with asterisks: *

p <0.05, * % p<0.01, * %% p<0.001 (Kruskal-Wallis with Dunn’s post-test), n = 35-40.
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Figure 4: Biomarkers for energy reserves. Energy content as protein (A), glycogen (B),
lipid (C) and total energy content (D) in J/mg tissue of Potamopyrgus antipodarum after
28 days exposure to water from the negative control (NC), the positive control (PC), the
conventional biological treatment (BT) and the eight advanced treatment technologies in an
on-site flow-through system. BT+Oz: after ozone system 1, GAC: after non-aerated activated
granular carbon treatment, GAC,: after aerated activated granular carbon treatment, BF: after
non-aerated biofilter treatment, BFa: after aerated biofilter treatment, MBR1/2: after
membrane bioreactor 1/2, MBR1+0Oz: after ozone system 2. Significant differences to NC and
BT, are indicated with asterisks: * p<0.05, *%* p<0.01, ** % p<0.001 (One-way
ANOVA with Bonferroni’s post-test (B, D) or Kruskal-Wallis with Dunn’s post-test (A, C)),

n=17-20.
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Figure 5: Endocrine activities of the on-site biotest. Estrogenic (A), anti-estrogenic (B),
androgenic (C) and anti-androgenic activity (D) in SPE extracts produced from
24 h composite samples taken in parallel to the in vivo experiment. PT: after primary
treatment, BT: after conventional biological treatment, BT+Os: after ozone system 1, GAC:
after non-aerated granular activated carbon treatment, GAC,: after aerated granular activated
carbon treatment, BF: after non-aerated biofilter treatment, BFa.: after aerated biofilter
treatment, MBR1/2: after membrane bioreactor 1/2, MBR1+0O3: after ozone system 2, :

cytotoxic, n = 32.



Ames YG7108

eXI ¢

100

o o o o )
o0 (Y] < N
IN3S F ueaw

[%] 80L2DA sewy Ajo1uabenpy



Figure 6: Mutagenicity of the on-site biotest. Mutagenicity in the Ames strain YG7108 in
SPE extracts produced from 24 h composite samples taken in parallel to the in vivo
experiment. PT: after primary treatment, BT: after conventional biological treatment, BT+Os:
after ozone system 1, GAC: after non-aerated granular activated carbon treatment, GACa:
after aerated granular activated carbon treatment, BF: after non-aerated biofilter treatment,
BF.: after aerated biofilter treatment, MBR1/2: after membrane bioreactor 1/2, MBR1+0O3:

after ozone system 2, £: cytotoxic, n = 8.
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Figure 7: Chemical analysis. Removal of micropollutants by the conventional biological
treatment (BT), by the ozonation (BT+Os3, A) and by the membrane bioreactor 2 (MBR2, B)

compared to the primary treatment. n = 1-4.
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HIGHLIGHTS

* Comprehensive comparison of toxicity and micropollutant removal by advanced

wastewater treatment

® Ozonation reduces estrogenicity and micropollutants but forms anti-estrogenicity and

mutagenicity
* Post-treatment with granular activated carbon is more effective than biofilters
* Membrane bioreactors are as effective as conventional biological wastewater treatment

* Effluents of ozonation and membrane bioreactors induce reproductive toxicity in P.

antipodarum
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