Gruppenfoto

Independent Group Leader
Mechanisms of Auditory Perception

Email: nowotny@bio.uni-frankfurt.de
Phone: +49 69/ 798 42063 


Projects

Sensitive Hearing – Mechanisms Related to Acoustic Signal Transduction

1) Basics of Peripheral Hearing

The first step in the hearing process is the conversion of sound waves into a movement of a structure, such as a membrane or sensory cells. This leads to the opening of mechano-sensitive ion channels in the sensory cells of the hearing organ. The resulting ion inflow changes the membrane potential of the neuronal cell, which can be transmitted to higher centers as a signal (action potential). This process is called mechano-electrical transduction (MET). Although MET is a fundamental process in hearing and can be found in all parts of the animal kingdom, it is still not understood in detail.

Using laser-Doppler-vibrometry measurements and physiological records we study the mechano-electrical transduction in a simple hearing organ of bushcrickets, called crista acustica. One of the most exciting moments of the project was when we realized that bushcrickets use travelling waves for frequency discrimination (Palghat Udayashankar et al. 2012 and see movie). These waves are comparable (wave propagation velocity and wave length) to travelling waves found in mammals. Electrophysiological measurements confirm the main sound enters through a spiracle in the prothorax and show that the tympanum motion is not directly coupled to the electrical response of the sensory cells (Hummel et al., 2011).


Funding:
The project is funded by the Deutsche Forschungsgemeinschaft (NO 841/1-1 and NO 841/2-1). Additional funding is provided by the Jürgen Manchot foundation and Goethe University by the project "Nachwuchswissenschaftler/innen im Fokus" 


On the link below you can download a small video file where you can see an animated wave. Click the right Mousebutton and choose "Save Link as...." to download the videofile.


2) Inner Ear Damages and the Generation of Tinnitus

The emergence of tinnitus after acoustic overstimulation and damage to the inner ear is an enormous psychological burden for patients. Exact causes of the resulting phantom noise are largely unknown. We suspect one reason for the initiation of the development of tinnitus in the signal transduction process and routing in the inner ear. We would like to understand which factors are critical and what drives the development of tinnitus to explain the observation that some animals develop tinnitus and others do not, despite all were exposed to the same damaging stimulus. Our experiments include the examination of the shift from acute to chronic tinnitus after acoustic overstimulation by using the startle reflex response in gerbils, which was successfully established as animal model for tinnitus detection (Nowotny et al. 2011). 


Funding:
The project is funded by the Deutsche Forschungsgemeinschaft (NO 841/4-1) and the Adolf-Messer Stiftungspreis 2009.


Awards and Publications

Awards:
Attempto Award 2007
The Attempto Award has been presented to young researchers for excellent work in the field of neurobiology.

Adolf Messer-Stiftungspreis 2009
The Award of the Adolf Messer-Foundation is given for foward-looking projects of basic research in natural and medical science.


Publications Nonscientific output
2016 --- 2015 --- 2014 --- 2013 --- 2012 --- 2011 --- 2010 --- 2009 --- 2006 --- 2003 --- 2000 2007 --- 2012


Publications

2016

Hummel J, Schöneich S, Kössl M, Scherberich J, Hedwig B, Prinz S, Nowotny M. Gating of Acoustic Transducer Channels Is Shaped by Biomechanical Filter Processes. J Neurosci. 36(8):2377-2382.

Steube N, Nowotny M, Pilz PK, Gaese BH. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils. Front Behav Neurosci. 2016 Jun 30;10:133. doi: 10.3389/fnbeh.2016.00133. eCollection 2016.

2015

Kiefer L, Schauen A, Abendroth S, Gaese BH, Nowotny M. Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience. 310: 176-187.

Hummel J, Schöneich S, Hedwig B, Nowotny M. (2014). Mechanical and electrical tuning in a tonotopical organized ear. In: Mechanics of Hearing. Corey D.P. and Karavitaki K.D. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, in press.

Nowotny M., Hummel J., Kössl M., Palgath Udajashankar A. (2014). Mechanical investigations of sound-induced responses in a simple ear. In: Mechanics of Hearing. Corey D.P. and Karavitaki K.D. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong. in press.

2014

Hummel J., Wolf K., Kössl M., Nowotny M. (2014). Processing of simple and complex acoustic signals in a tonotopically organized ear. Proc Biol Sci. 281(1796): 20141872.

Palgath Udajashankar A., Kössl M., Nowotny M. (2014). Traveling wave energy is lateralized in the hearing organ of bushcrickets. Plos One 9(1): e86090.

Stumpner A., Nowotny M. (2014). Neural processing in the bushcricket auditory pathway. In: Topics of Acoustic Communication in Insects. Hedwig B (Ed.) Springer-Verlag, Berlin, Heidelberg. Volume 1, 2014, pp 143-166. 

Möckel D., Nowotny M., Kössl M. (2014). Mechanical basis of otoacoustic emissions in tympanal hearing organs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 200(7):681-691. 

2013

Mora E C; Cobo-Cuan A; Macías F; Pérez M; Nowotny M; Kössl M. (2013) Mechanical tuning of the moth ear: distortion-product otoacoustic emissions and tympanal vibrations. J Exp Biol.216:3863-3872.

2012

Palghat Udayashankar A.; Kössl M.; Nowotny M. (2012). In-vivo measurements of tonotopically ordered traveling waves. PLoS One. 7(2): e31008.

Möckel, D.Lang, J.Kössl, M. Nowotny, M. (2012). Temperature-dependence of DPOAEs in tympanal organs. J Exp Biol accepted.

2011

Nowotny M.; Remus M.; Kössl M.; Gaese B.H. (2011). Characterization of the Perceived Sound of Trauma-Induced Tinnitus in Gerbils. J Acoust Soc Am 130(5): 2827-2834.

Hummel J.; Kössl M.; Nowotny M. (2011). Sound-induced tympanal membrane motion in bushcrickets and its relation to the sensory output. J Exp Biol 214: 3596-3604.

Nowotny M.; Gummer A.W. (2011). Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation. J. Acoust. Soc. Am. Volume 130: 3852-3872.

Palghat Udayashankar A.; Kössl M.; Nowotny M. (2011). Tonotopically ordered traveling waves in the hearing organs of bushcrickets in-vivo. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 466-472.

Nowotny M.; Weber M.; Palghat Udayashankar A.; Hummel J.; Kössl M. (2011). Sound Transduction in the Auditory System of Bushcrickets. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 461-465.

Fleischer M.; Harasztosi C.; Nowotny M.; Zahnert T.; Gummer A.W. (2011). Continuum Mechanical Model of the Outer Hair Cell. In: Mechanics of Hearing. Shera C. and Olson E. (Eds.). World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 160-165.
2010

Nowotny, M.; Hummel, J.Weber, M.Möckel, D.Kössl, M. (2010). Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. J Comp Physiol A 196: 939-945.

2009

Gaese, B. H. ; Nowotny, M. ; Pilz, P. K. D. (2009). Acoustic startle and prepulse inhibition in the Mongolian gerbil. Physiology & Behavior 98: 460-466.

2006

Nowotny, M.; Gummer, A.W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci USA 103: 2120-2125.

Nowotny, M.; Gummer, A.W. (2006). Elektromechanische Transduktion: Einfluss der äußeren Haarsinneszellen auf das Bewegungsmuster des Corti-Organs. HNO 54: 536-543.

Gummer, A. W.; Nowotny, M.; Scherer, M. P.; Vete?ník, A. (2006). Pulsating fluid motion and deflecting of the stereocilia of the inner hair cells due to the electromechanics of the outer hair cells. In: Nuttall, A.. L.; Ren, T.; Gillespie, P.; Grosh, K.; de Boer, E. (Hrsg.): Auditory Mechanisms: Processes and Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 101?102.

Nowotny, M.; Gummer, A. W. (2006). What do the OHCs move with their electromotility? In: Nuttall, A. L.; Ren, T.; Gillespie, P.; Grosh, K.; de Boer, E. (Hrsg.): Auditory Mechanisms: Processes and Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 17?25.
2003

Scherer, M. P.; Nowotny, M.; Dalhoff, E.; Zenner, H. P.; Gummer, A. W. (2003). High-frequency vibration of the organ of Corti in vitro.
In: Gummer, A. W. (Hrsg.): Biophysics of the Cochlea: from Molecules to Models. World Scientific, New Jersey, London, Singapore, Hong Kong, pp. 271-277.

2000 Martin T.; Nowotny M. (2000). The docodont Haldanodon from the Guimarota mine.- In: Martin T & Krebs B (eds.) Guimarota , a Jurassic Ecosystem. Pfeil Verlag. München.

Abstracts


2013
---  2011 --- 2010 --- 2009 --- 2008 --- 2006 --- 2005 --- 2004 --- 2003 --- 2002 --- 2001

2013
Hummel J, Kössl M, Nowotny M (2013) Mechanical and neuronal processing of frequencies contained in the conspecific song of Mecopoda elongata. (“Invertebrate Sound and Vibration Meeting 2013”, Glasgow, UK, 22.-26. July 2013).
   
2011

Nowotny M., Remus M., Kössl M., Gaese B. 2011.Trauma-induced tinnitus in gerbils centers around the induction frequency. In: Santi PA (ed.) Abstracts of the 34th Annual Midwinter Research Meeting., Association for Research in Otolaryngology.# 188

Hummel J., Kössl M., Nowotny M. 2011. Does the auditory nerve activity reflect the tympanal membrane motion in bushcrickets? 8th Göttingen Meeting of the German Neuroscience Society. # T17-8A.

Lang J., Kössl M., Nowotny M. 2011. Temperature dependence of DPOAEs in grasshoppers. 8th Göttingen Meeting of the German Neuroscience Society. # T17-2C.

Hummel, J., Kössl, M. und Nowotny, M. (2011). Functional coupling of tympanal membrane motion and tympanal nerve response. ?Invertebrate Sound and Vibration, 13th International Meeting?.

Remus M., Gaese B., Kössl M., Nowotny M. 2011. Trauma-induced tinnitus in gerbils centers around the induction frequency. 8th Göttingen Meeting of the German Neuroscience Society. # T17-8C.

Udajashankar A.P., Kössl M., Nowotny M. 2011. Auditory mechanics of bushcrickets in-vivo. 8th Göttingen Meeting of the German Neuroscience Society. # T17-4A.

Nowotny, M., Palghat Udayashankar, A., Weber, M., Hummel, J. und Kössl, M. (2011). Sound Transduction in the Auditory System of Bushcrickets.?Mechanics of Hearing 2011, The 11th International
2010

Fleischer, M.; Zahnert, T.; Harasztosi, C.; Nowotny, M.; Baumgart, J.; Gummer, A.W. (2010). ?OHC Somatic Electromechanical Force Coupled Directly to the IHC Stereocilia. Assoc Res Otolaryngol Abs: 670.

Martin, T.; Nowotny, M.; Fischer, M. (2010). New data on tooth replacement in the Late Jurassic docodont mammal Haldanodon expectatus. 70th Anniversary Meeting Society of Vertebrate Paleontology, Program and Abs: 130A

2009

Nowotny, M. ; Möckel, D. ; Weber, M. ; Kössl, M. (2009). ?Sound induced vibration pattern on the tympanal membranes of the bushcricket Mecopoda elongata.? 8th Göttingen Meeting of the German Neuroscience Society: T17-1C.

Gaese, B. ; Nowotny, M. ; Pilz, P. K. D. (2009). ?Acoustic startle response in the wild-type and domesticated Mongolian gerbil? 8th Göttingen Meeting of the German Neuroscience Society: T18-6B.

Gummer, A.W. ; Chiaradia, C. ; Nowotny, M. (2009). OHC Somatic Electromechanical Force Coupled Directly to the IHC Stereocilia.
Assoc Res Otolaryngol Abs: 256.

Chiaradia C. ; Nowotny, M. ; Gummer A.W. (2009). OHC induced vibration pattern of the basilar membrane. In: Cooper, N.P. and Kemp, D.T. (Eds.): Concepts and Challenges in the Biophysics of Hearing. World Scientific, Singapore, New Jersey, London, Hong Kong: 283-287.

2008

Chiaradia, C.; Nowotny, M.; Gummer, A. W. (2008): Deflection of IHC Stereocilia by OHC Somatic Electromotility.
Assoc Res Otolaryngol Abs: 176.

Eckrich, T.; Nowotny, M.; Harasztosi, C.; Scherer, M.; Gummer, A. W. (2008): Impedance Measurements of Isolated Outer Hair Cells. Assoc Res Otolaryngol Abs: 179.

2006

Nowotny, M.; Gummer, A. W. (2006). Influence of electrically-induced mobility of outer hair cells on the organ of Corti motion. Assoc Res Otolaryngol Abs: 997.

2005

Nowotny, M.; Gummer, A. W. (2005). Outer hair cell induced motion of the organ of Corti: Mechanisms of active amplification.

In: Elsner, N. ; Zimmermann, H. (Hrsg.): The Neurosciences from Basic Research to Therapy. Proceedings of the 30th Göttingen Neurobiology Conference 2005. Stuttgart, Georg Thieme: 98.

Nowotny, M.; Gummer, A. W. (2005). Influence of electrically-induced somatic mobility of outer hair cells on the basilar membrane motion. Assoc Res Otolaryngol Abs: 328.

Nowotny, M.; Gummer, A. W. (2005). OHC-induced motion of the organ of Corti. Abstract book of the 42nd Workshop on Inner Ear Biology: O11.

2004

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2004). Impact of outer hair cell electromotility on organ of Corti vibration ? results from an in situ preparation. Assoc Res Otolaryngol Abs: 1002.

2003

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2003). The motion of the subtectorial space and its resulting fluid motion in the guinea pig cochlea. In: Elsner, N.; Zimmermann, H. (Hrsg.): The Neurosciences from Basic Research to Therapy. Proceedings of the 29th Göttingen Neurobiology Conference 2003. Stuttgart, Georg Thieme: 328.

Nowotny, M.; Scherer, M. P.; Zenner, H.-P.; Gummer, A. W. (2003). Stimulus induced volume change in the subtectorial space of the organ of Corti. Assoc Res Otolaryngol Abs: 112.

Nowotny, M.; Zenner, H.-P.; Gummer, A. W. (2003). Electrically induced motion of the organ of Corti in the guinea-pig cochlea and its possible effect on the response of inner hair cells. Abs 96. Jahrestagung der Deutschen Zoologischen Gesellschaft: P5.

Gummer, A. W.; Nowotny, M.; Scherer, M. P.; Zenner, H.-P.(2003). Laserinterferometrische Untersuchung des subtectorialen Spaltes der Säugetiercochlea. HNO 28: 147.

2002

Gummer, A. W.; Scherer, M. P.; Nowotny, M. (2002). Coupling of electromechanical force into the organ of Corti. Assoc Res Otolaryngol Abs: 720.

Scherer, M. P.; Nowotny, M.; Gummer, A. W. (2002). High frequency vibration modes in the organ of Corti. Assoc Res Otolaryngol Abs: 911.

2001

Nowotny, M.; Martin, T.; Fischer, M. (2001). Dental anatomy and tooth replacement of Haldanodon exspectatus (Docodonta, Mammalia) from the Upper Jura of Portugal. Journal of Morphology 248, 3: 268.