Institut für Molekulare Biowissenschaften

Forschung

Einricht mbw

Forschung

Derzeit elf Arbeitsgruppen erforschen am Institut die verschiedensten molekularen Aspekte des Lebens.

Im Fokus stehen dabei vor allem Mikroorganismen und Pflanzen. Membranbiologie ist traditionell eine der Stärken des Instituts. Im Zentrum stehen Analysen der Struktur und Funktion membranständiger Proteine, deren Regulation und Anbindung an intrazelluläre Signalkaskaden. Im Rahmen der Biotechnologie wird an der Entwicklung mikrobieller Zellfabriken durch klassische oder rekombinante Verfahren zur Überproduktion von verschiedensten Chemikalien und Enzymen gearbeitet. Ein neuer Aspekt ist die Identifizierung und Charakterisierung neuer Metabolite im Sekundärstoffwechsel insektenpathogener Mikroben und deren Anwendung. Es werden Stoffwechselwege gezielt verändert, um zum Beispiel mit Hefen Biokraftstoffe zu produzieren oder Therapieansätze für die Verbesserung der zellulären Abwehr zu entwickeln.

In der Mikrobiellen Physiologie liegt der Schwerpunkt auf der Stoffwechselphysiologie, ihrer Regulation und den genetischen Grundlagen in Archäen, Bakterien und Eukaryoten. Die Ergebnisse bilden die Grundlage für Analysen der Membranbiologie und der Biotechnologie, so dass eine enge Vernetzung im Fachbereich und darüber hinaus besteht. Schwerpunkte der Forschungsrichtung Molekulare Pflanzenphysiologie sind der Energiestoffwechsel in photosynthetischen Organismen und die diesem Stoffwechsel zugrunde liegenden Interaktionen der Organellen. Dabei stehen physiologische, strukturell biochemische und genetische Untersuchungen im Vordergrund.

Im Forschungsschwerpunkt Degenerative Prozesse und molekularer Stress liegt der Fokus auf der Untersuchung der molekularen Mechanismen des Alterns und insbesondere der Rolle der Mitochondrien in diesem Prozess, sowie auf der Analyse der zellulären Antwort auf Hitze- und Photostress. Die am Schwerpunkt Schutzfunktion von Carotinoiden beteiligten Gruppen bearbeiten den molekularen Mechanismus der Carotinoid- Wirkung bei Starklicht sowie der Protektion gegen reaktive Sauerstoffspezies und Membranschädigungen, die von externen Faktoren hervorgerufen werden. Bei den regulatorischen RNAs geht es um die strukturelle und funktionale Analyse von regulatorischen nicht-kodierenden RNAs, deren Interaktion mit Proteinen sowie ihre biologische Funktion und zelluläre Regulation.

Forschungsthemen

Einricht mbw

Forschungsthemen

Lehrstuhl     Anrede Vorname     Nachname
               

Biologie und Biotechnologie der Pilze

   

Prof.

Richard

   

Spivallo

Biologie und Genetik von Prokaryonten

   

Prof.

Jörg

   

Soppa

Biosynthese in Pflanzen und Mikroorganismen

   

Prof.

Gerhard

   

Sandmann

Merck-Stiftungsprofessur Molekulare Biotechnologie

   

Prof.

Helge

   

Bode

Molekulare Entwicklungsbiologie

   

Prof.

Heinz Dieter

   

Osiewacz

Molekulare Genetik und Zelluläre Mikrobiologie

   

Prof.

Karl-Dieter

   

Entian

Molekulare Mikrobiologie und Bioenergetik

   

Prof.

Volker 

   

Müller

      Prof. Beate    

Averhoff

Molekulare Zellbiologie der Pflanzen

   

Prof.

Enrico

   

Schleiff

Pflanzliche Zellphysiologie

   

Prof.

Claudia

   

Büchel

Physiologie und Genetik niederer Eukaryonten

   

Prof.

Eckhard

   

Boles

RNA-Strukturbiologie

   

Prof.

Jens

   

Wöhnert

 

Hochschullehrer

Einricht mbw

Hochschullehrer

Anrede Vorname     Nachname     Lehrstuhl
               

Prof.

Beate

   

Averhoff

   

Molekulare Mikrobiologie und Bioenergetik

Prof.

Helge

   

Bode

   

Merck-Stiftungsprofessur Molekulare Biotechnologie

Prof.

Eckhard

   

Boles

   

Physiologie und Genetik niederer Eukaryonten

Prof.

Claudia

   

Büchel

   

Pflanzliche Zellphysiologie

Prof.

Karl-Dieter

   

Entian

   

Molekulare Genetik und Zelluläre Mikrobiologie

Prof.

Volker 

   

Müller

   

Molekulare Mikrobiologie und Bioenergetik

Prof.

Heinz Dieter

   

Osiewacz

   

Molekulare Entwicklungsbiologie

Prof.

Gerhard

   

Sandmann

    Biosynthese in Pflanzen und Mikroorganismen

Prof.

Enrico

   

Schleiff

   

Molekulare Zellbiologie der Pflanzen

Prof.

Jörg

   

Soppa

   

Biologie und Genetik von Prokaryonten

Prof. Richard    

Spivallo

   

Biologie und Biotechnologie der Pilze

Prof.

Jens

   

Wöhnert

   

RNA-Strukturbiologie

Lehre

Einricht mbw

Lehre

In der Lehre ist das Institut beteiligt an den Bachelorstudiengängen Biowissenschaften, Biophysik und Bioinformatik sowie an den Lehramtsstudiengängen des Fachbereichs Biowissenschaften und der Biologieausbildung der Mediziner. Darüber hinaus bietet es die zwei Masterstudiengänge Molekulare Biowissenschaften und Molekulare Biotechnologie an und ist an anderen kooperativen Masterstudiengängen beteiligt.

Kolloquium

Einricht mbw

Kolloquium

Wintersemester 2017/2018

  • Die Vorträge finden jeweils um 17:15 Uhr statt.
  • Biozentrum auf dem Campus Riedberg, Raum NU 260/3.13

Mo.
25.09.2017

 

Prof. Dr. Sean J. Elliott (Boston/USA)

Probing Electrocatalysis and Internal “Wiring” of Redox Enzymes: AdoMet Radical Enzymes and the Hydrogen Dependent CO2 Reductase


Di. 24.10.2017

 

Prof. Dr. Michael McInerney (Oklahoma)

Energy from Biomass: Genomic and Proteomic Insights into the Bioenergetics of Anaerobic Syntrophic Metabolism


Di. 05.12.2017

 

Prof. Dr. Hans-Georg Sahl (Bonn)

The cell envelope as target for new antibiotics

Antibiotic resistance development is continuously eroding our anti- infective treatment options and in spite of considerable investment in academia and industry sectors, we are not very successful in bringing new drugs to the market. Over the last two decades, target-based screening did not identify new targets and compounds suitable for development of antibiotic drugs. Apparently, for better prediction of suitable targets, a deeper understanding of cellular functions and consequences of target inactivation is necessary. Recent advances in bacterial cell biology have demonstrated the astounding degree of functional organization in bacterial cells, where vital processes require elaborate spatiotemporal-control of the components involved. It became obvious that successful antibiotics, subsequent to well characterized interactions with their primary targets, often trigger pleiotropic downstream effects that cause disintegration of large biosynthetic machineries and eventually network collapse and efficient killing.

We studied various classes of natural compound antibiotics such as glyco- and lipopetides, lantibiotics (1) and defensins from mammals and invertebrates (2), as well as entirely structurally novel classes such as the teixobactin class (3). Many of these compounds target bacterial cell wall biosynthesis, which is an “old” target, but obviously one of best for antibiotic attack. Most of these inhibitors form complexes with the bactoprenol-bound intermediates of cell wall biosynthesis, in particular Lipid II, and simultaneously impair the functional organization of the interdependent cell wall biosynthesis and cell division machineries. Many antimicrobial peptides cause massive perturbation of these machineries even without interaction with a defined molecular target. The examples underline the necessity to learn more about the cellular stresses triggered by antibiotics and to think beyond mere drug-target interactions for future antibiotic development; “old” target may have more to offer in this direction.


Sondertermin!

Mo.
11.12.2017

 

Dr. Eric P. Skaar (Tenessee)

The response of Acinetobacter baumannii to nutrient metal starvation

Acinetobacter baumannii is an important nosocomial pathogen that accounts for a significant percentage of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the need for new therapeutic strategies to combat this growing public health threat.

 Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, my laboratory is interrogating the impact of host metal binding proteins in defense against A. baumannii pneumonia, and the bacterial factors that compete with this powerful host defense. In particular, we are interested in the neutrophil protein calprotectin (Cp) that inhibits microbial growth through the chelation of nutrient manganese (Mn) and zinc (Zn). We have found that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Furthermore, we discovered that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of metal chelation. We have also found that this system combats CP in vivo.

These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress.


Di. 19.12.2017

 

 Dr. Lars Dietzel

Abiotic stress signals in photosynthetic acclimation responses: from gene expression networks to molecular function

Plants and algae regulate their photosynthetic capacity very fast and efficient to allow for high photosynthetic yield whilst protected from oxidative damage. Besides photoreceptors, the photosynthetic machinery itself senses environmental conditions like light intensity or spectral composition by “reading” the transthylakoid pH and the redox state of photosynthetic electron carriers such as plastoquinone (PQ). These signals are embedded in a highly sophisticated regulatory system adjusting the energy transfer from light harvesting complexes (LHC) to the photosystems (PS) by posttranslational modifications in the short-term and by stoichiometric adjustment of photosynthetic complexes in the long-term. The long-term process involves interorganellar signaling and gene regulation in response to a change in the PQ redox state. As primary targets, we identified nuclear encoded “mitochondrial” genes and “chloroplast genes”. Further, the transcriptional activity of the chondriome was PQ redox controlled, pointing to the notion that the interorganellar communication is more direct and intense than previously expected. Our approach allowed us to identify several novel plastid factors such as evolutionary conserved proteins like Psb27 and Psb28 as well as plastid FKBP-type immunophilins, for which we revealed functions in PSII assembly and regulation. Although the plant PSII structure is fairly known, we just began to realize how structural dynamics of PSII in response to pH and phosphorylation relate to PSII light use efficiency and photoprotection. We use two approaches to understand posttranslational regulation of energy transfer and PSII antenna size: In vitro, we mimic changes in the antenna system induced by pH, ion gradients and phosphorylation using proteo-liposomes monitored by spectroscopic techniques. In vivo, we investigate how phosphorylation of LHC and PS subunits restores the balanced electron flow from PSII to the electron sinks in the metabolic network by non-invasive chlorophyll fluorescence spectroscopy. We hypothesize that the redox activated thylakoid kinase system induces sitespecific phosphorylation changing the energy transfer routes from the antenna to PSII . Currently, we are determining the exact phosphorylation sites and phosphorylation kinetics with the aim to model structural dynamics of photosynthetic complexes in response the abiotic stresses and to understand how light acclimation contributes to photosynthetic performance and plant fitness.


Di. 16.01.2018

 

 Prof. Dr. Rolf Backofen, Freiburg


Di. 30.01.2018

 

 Prof. Dr. Jennifer Christina Ewald, Tübingen


Di. 13.02.2018

 

 



Portal mbw7 Portal mbw3 Portal mbw4 Portal mbw5 Portal mbw6 Portal mbw8 Portal mbw0 Portal mbw9 Portal mbw2 Portal mbw Portal mbw1