Institut für Molekulare Biowissenschaften

einricht_mbw

Forschung

Derzeit elf Arbeitsgruppen erforschen am Institut die verschiedensten molekularen Aspekte des Lebens.

Im Fokus stehen dabei vor allem Mikroorganismen und Pflanzen. Membranbiologie ist traditionell eine der Stärken des Instituts. Im Zentrum stehen Analysen der Struktur und Funktion membranständiger Proteine, deren Regulation und Anbindung an intrazelluläre Signalkaskaden. Im Rahmen der Biotechnologie wird an der Entwicklung mikrobieller Zellfabriken durch klassische oder rekombinante Verfahren zur Überproduktion von verschiedensten Chemikalien und Enzymen gearbeitet. Ein neuer Aspekt ist die Identifizierung und Charakterisierung neuer Metabolite im Sekundärstoffwechsel insektenpathogener Mikroben und deren Anwendung. Es werden Stoffwechselwege gezielt verändert, um zum Beispiel mit Hefen Biokraftstoffe zu produzieren oder Therapieansätze für die Verbesserung der zellulären Abwehr zu entwickeln.

In der Mikrobiellen Physiologie liegt der Schwerpunkt auf der Stoffwechselphysiologie, ihrer Regulation und den genetischen Grundlagen in Archäen, Bakterien und Eukaryoten. Die Ergebnisse bilden die Grundlage für Analysen der Membranbiologie und der Biotechnologie, so dass eine enge Vernetzung im Fachbereich und darüber hinaus besteht. Schwerpunkte der Forschungsrichtung Molekulare Pflanzenphysiologie sind der Energiestoffwechsel in photosynthetischen Organismen und die diesem Stoffwechsel zugrunde liegenden Interaktionen der Organellen. Dabei stehen physiologische, strukturell biochemische und genetische Untersuchungen im Vordergrund.

Im Forschungsschwerpunkt Degenerative Prozesse und molekularer Stress liegt der Fokus auf der Untersuchung der molekularen Mechanismen des Alterns und insbesondere der Rolle der Mitochondrien in diesem Prozess, sowie auf der Analyse der zellulären Antwort auf Hitze- und Photostress. Die am Schwerpunkt Schutzfunktion von Carotinoiden beteiligten Gruppen bearbeiten den molekularen Mechanismus der Carotinoid- Wirkung bei Starklicht sowie der Protektion gegen reaktive Sauerstoffspezies und Membranschädigungen, die von externen Faktoren hervorgerufen werden. Bei den regulatorischen RNAs geht es um die strukturelle und funktionale Analyse von regulatorischen nicht-kodierenden RNAs, deren Interaktion mit Proteinen sowie ihre biologische Funktion und zelluläre Regulation.

einricht_mbw

Lehre

In der Lehre ist das Institut beteiligt an den Bachelorstudiengängen Biowissenschaften, Biophysik und Bioinformatik sowie an den Lehramtsstudiengängen des Fachbereichs Biowissenschaften und der Biologieausbildung der Mediziner. Darüber hinaus bietet es die zwei Masterstudiengänge Molekulare Biowissenschaften und Molekulare Biotechnologie an und ist an anderen kooperativen Masterstudiengängen beteiligt.

einricht_mbw

Kolloquium

Sommersemester 2019

Die Vorträge finden jeweils um 17:15 Uhr statt. The talks starts at 17:15.

Ort: Biozentrum auf dem Campus Riedberg, Raum 260/3.13

Where:  Campus Rieberg, Biocenter, Section of the Building 260 Room 3.13


Di. 07.05.2019   Dr. Christin Naumann

Leibnitz Institute of Plant Biochemistry (IPB)

Phosphate Limitation Activates ER Stress-dependent Autophagy in Root Tips

Di. 21.05.2019   Prof. Dr. Andreas Moeglich

Universitat Bayreuth

Controlling Nucleic-Acid-Based rocesses by Light

Sensory photoreceptors underpin diverse adaptations of organismal behaviour, lifestyle and physiology to incident light. In optogenetics, photoreceptors double as genetically encoded, light-gated actuators and enable the noninvasive control of cellular circuits with spatiotemporal precision. Against this backdrop, we investigate and engineer blue-light-responsive receptors of the light-oxygen-voltage (LOV) family that mediate optogenetic control of various nucleic-acid-based processes, e.g., transcription, translation and endonuclease activity. Biochemical analyses of receptor structure, function and signalling mechanism unravel the molecular bases for light-dependent allostery and inform additional protein engineering efforts.

Di. 28.05.2019   Dr. Nicolai Müller

Universität Konstanz

Anaerobic degradation of C1 and C2 compounds via acetaldehyde in the syntrophic acetogen Thermacetogenium phaeum

Degradation of organic compounds in acetogens in many cases occurs through acetyl-coenzyme A as central metabolite, which is funnelled into the Wood-Ljungdahl pathway. Acetaldehyde is one possible precursor for acetyl-coenzyme A and is especially occurring during oxidation of ethanol or ethanolamine. For the production or degradation of acetaldehyde, various microorganisms harbor two different enzyme systems, namely non-acetylating aldehyde dehydrogenase, which oxidizes aldehydes with ferredoxin as low potential electron carrier, or acetylating aldehyde dehydrogenase, catalyzing oxidation of aldehydes with NAD+ while transferring an acetyl-residue to coenzyme A. Proteome and enzyme assay analysis of the thermophile Thermacetogenium phaeum showed, that aldehyde:ferredoxin oxidoreductase (AOR), which is a non-acetylating aldehyde dehydrogenase, is highly abundant during degradation of methanol, ethanol, ethanolamine, or syntrophic oxidation of acetate in co-culture with Methanothermobacter thermoautotrophicus. In all cases, AOR oxidizes acetaldehyde with ferredoxin and the latter is provided for the reduction of CO2. During degradation of these substrates in the model acetogen Acetobacterium woodii a Rnf-complex serves as ferredoxin-reducing enzyme system which catalyses the endergonic oxidation of NADH with ferredoxin at the expense of a sodium ion gradient. Such a Rnf-complex is absent in T. phaeum and here AOR takes over the function of providing reduced ferredoxin. In addition, AOR contributes to high-affinity acetaldehyde turnover thus favouring endergonic oxidation of ethanol. In that way however, acetaldehyde cannot be used for substrate level phosphorylation as in A. woodii. Alternative modes of energy conservation in both organisms are concluded from these findings.

Di. 04.06.2019   Prof. Dr. Dina Grohmann

Regensburg

Archaeal transcription and the archaeal transcriptome: more complex than we thought

The discovery of the archaeal domain of life is tightly connected to an in depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases were nothing like the bacterial RNA polymerase (RNAP) but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40 years ago paved the way for in-depth studies of the transcription machinery in archaea. However, even though the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. To this end, we employ single-molecule FRET measurements and developed direct RNA sequencing of native prokaryotic RNAs based on the single-molecule Nanopore sequencing technology to gain comprehensive insights into the RNA metabolism of archaea. In this talk, I discuss how these single-molecule approaches combined with biochemical investigations extended our understanding of transcription initiation, the conformational changes of the RNAP, co-transcriptional processes and rRNA processing in archaea.

Di. 02.07.2019   Dr. Janosch Hennig

EMBL Heidelberg

Integrative structural biology of protein-RNA complexes

Recent mRNA interactome capture studies identified a large number of novel RNA binding proteins and could show that around 10% of all proteins bind directly to RNA. Many of these proteins surprisingly do not harbour any known classical RNA binding domain. Thus, it is an important task to validate and understand their RNA binding properties in order to elucidate their biological role. Another general problem is to decipher the protein-RNA recognition code, meaning to understand what determines the protein's structure- and/or sequence specificity towards RNA.

One way towards understanding the protein-RNA recognition code for certain RNA binding proteins is the combination of different structural biology methods, often termed integrative structural biology. Here, different restraints and input structures derived by classical methods, like NMR, X-ray crystallography and cryo-EM can be used to obtain a hybrid model of the protein-RNA complex. If these structural data are also combined with biophysical, biochemical and even cell biological data, a detailed description of the studied system can be provided. 
How to go about such an endeavour will be illustrated with two current examples we work on. i) The identification of TRIM25 as a non-classical RNA binding protein, and ii) RNA structure specificity of Unr, a classical single-stranded RNA binding protein.

Di. 07.05.2019   Dr. Christin Naumann

Leibnitz Institute of Plant Biochemistry (IPB)

Phosphate Limitation Activates ER Stress-dependent Autophagy in Root Tips

Di. 21.05.2019   Prof. Dr. Andreas Moeglich

Universitat Bayreuth

Controlling Nucleic-Acid-Based rocesses by Light

Sensory photoreceptors underpin diverse adaptations of organismal behaviour, lifestyle and physiology to incident light. In optogenetics, photoreceptors double as genetically encoded, light-gated actuators and enable the noninvasive control of cellular circuits with spatiotemporal precision. Against this backdrop, we investigate and engineer blue-light-responsive receptors of the light-oxygen-voltage (LOV) family that mediate optogenetic control of various nucleic-acid-based processes, e.g., transcription, translation and endonuclease activity. Biochemical analyses of receptor structure, function and signalling mechanism unravel the molecular bases for light-dependent allostery and inform additional protein engineering efforts.

Di. 28.05.2019   Dr. Nicolai Müller

Universität Konstanz

Anaerobic degradation of C1 and C2 compounds via acetaldehyde in the syntrophic acetogen Thermacetogenium phaeum

Degradation of organic compounds in acetogens in many cases occurs through acetyl-coenzyme A as central metabolite, which is funnelled into the Wood-Ljungdahl pathway. Acetaldehyde is one possible precursor for acetyl-coenzyme A and is especially occurring during oxidation of ethanol or ethanolamine. For the production or degradation of acetaldehyde, various microorganisms harbor two different enzyme systems, namely non-acetylating aldehyde dehydrogenase, which oxidizes aldehydes with ferredoxin as low potential electron carrier, or acetylating aldehyde dehydrogenase, catalyzing oxidation of aldehydes with NAD+ while transferring an acetyl-residue to coenzyme A. Proteome and enzyme assay analysis of the thermophile Thermacetogenium phaeum showed, that aldehyde:ferredoxin oxidoreductase (AOR), which is a non-acetylating aldehyde dehydrogenase, is highly abundant during degradation of methanol, ethanol, ethanolamine, or syntrophic oxidation of acetate in co-culture with Methanothermobacter thermoautotrophicus. In all cases, AOR oxidizes acetaldehyde with ferredoxin and the latter is provided for the reduction of CO2. During degradation of these substrates in the model acetogen Acetobacterium woodii a Rnf-complex serves as ferredoxin-reducing enzyme system which catalyses the endergonic oxidation of NADH with ferredoxin at the expense of a sodium ion gradient. Such a Rnf-complex is absent in T. phaeum and here AOR takes over the function of providing reduced ferredoxin. In addition, AOR contributes to high-affinity acetaldehyde turnover thus favouring endergonic oxidation of ethanol. In that way however, acetaldehyde cannot be used for substrate level phosphorylation as in A. woodii. Alternative modes of energy conservation in both organisms are concluded from these findings.

Di. 04.06.2019   Prof. Dr. Dina Grohmann

Regensburg

Archaeal transcription and the archaeal transcriptome: more complex than we thought

The discovery of the archaeal domain of life is tightly connected to an in depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases were nothing like the bacterial RNA polymerase (RNAP) but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40 years ago paved the way for in-depth studies of the transcription machinery in archaea. However, even though the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. To this end, we employ single-molecule FRET measurements and developed direct RNA sequencing of native prokaryotic RNAs based on the single-molecule Nanopore sequencing technology to gain comprehensive insights into the RNA metabolism of archaea. In this talk, I discuss how these single-molecule approaches combined with biochemical investigations extended our understanding of transcription initiation, the conformational changes of the RNAP, co-transcriptional processes and rRNA processing in archaea.

Di. 02.07.2019   Dr. Janosch Hennig

EMBL Heidelberg

Integrative structural biology of protein-RNA complexes

Recent mRNA interactome capture studies identified a large number of novel RNA binding proteins and could show that around 10% of all proteins bind directly to RNA. Many of these proteins surprisingly do not harbour any known classical RNA binding domain. Thus, it is an important task to validate and understand their RNA binding properties in order to elucidate their biological role. Another general problem is to decipher the protein-RNA recognition code, meaning to understand what determines the protein's structure- and/or sequence specificity towards RNA.

One way towards understanding the protein-RNA recognition code for certain RNA binding proteins is the combination of different structural biology methods, often termed integrative structural biology. Here, different restraints and input structures derived by classical methods, like NMR, X-ray crystallography and cryo-EM can be used to obtain a hybrid model of the protein-RNA complex. If these structural data are also combined with biophysical, biochemical and even cell biological data, a detailed description of the studied system can be provided. 
How to go about such an endeavour will be illustrated with two current examples we work on. i) The identification of TRIM25 as a non-classical RNA binding protein, and ii) RNA structure specificity of Unr, a classical single-stranded RNA binding protein.

Institut für Molekulare Biowissenschaften

Campus Riedberg
Biozentrum N210-207
Postfach 6
Max-von-Laue-Straße 9
60438 Frankfurt

T +49 69 798-29603
F +49 69 798-29600
E info-mbw@bio.uni-frankfurt.de
WhatsAPP +49 1525 4967321

Kontakt

Geschäftsführender Direktor: 
Prof. Dr. Claudia Büchel
gd.mbw@bio.uni-frankfurt.de

Stellv. Geschäftsführender Direktor:
Prof. Dr. Jens Wöhnert

Allgemeine Informationen:
Dr. Markus Fauth
T 069 798 29603
Dr. Matthias Rose
T 069 798 29529

Sekretariat:
Brunhilde Schönberger,
N250, EG, Raum 0.05,
T 069 798 29553