Environmental endocrine active compounds (EAC) have the potential to interfere with the endocrine, immune, and nervous systems. It is theorized that these agents are responsible for reproductive abnormalities in both humans and wildlife and the increase in the incidence of breast and testicular cancers. There is concern that current risk assessment strategies for compounds released into the environment are not adequate to evaluate possible hormonal disruption capabilities. Two critical issues concerning endocrine disruption are the existence of possible low dose effects that do not occur at high doses and the impact on the developing organism. Bisphenol A (BPA), an estrogenic chemical used in the manufacture of epoxy resins and polycarbonates, is a substance ubiquitously found in consumer products and was the sole endocrine active compound discussed at this workshop. Studies investigating its potential adverse effects have yielded conflicting results. Alterations in the reproductive system have been observed in some investigations on BPA exposure at doses far below the current accepted NOAEL of 50 mg/kg while no effect has been seen in other studies. The aim of this workshop was to clarify which factors may be responsible for these conflicting results and to identify and prioritize future research strategies. This workshop did not serve as a regulatory risk assessment evaluation.

Program

SATURDAY, NOVEMBER 18, 2000

Chair: Ibrahim Chahoud, Freie Universität Berlin, Germany

OPENING
10:00 Martin Paul
Dean of Benjamin Franklin Medical Center, Freie Universität Berlin, Germany
10:15 Dietrich Rosenkranz
Chairman of the Department of Ecology
Federal Environmental Agency, Germany
10:30 Ellen Silbergeld, University of Maryland, USA
Endocrine Disruption: current strategies in the US
11:00 Ursula Gundert-Remy, Federal Health Agency for Consumer Protection and Veterinary Medicine, Germany
Endocrine Disruption—a challenge for toxicology
11:30 Coffee Break

11:45 Session I ECOTOXICOLOGY
Chair: Andreas Gies, Federal Environmental Agency, Germany
11:55 John Sumpter, Brunel University, UK
A multi-generation study of the effects of Bisphenol-A on the fathead minnow (Pimephales promelas)
12:25 Werner Kloas, Institute of Freshwater Ecology and Inland Fisheries, Germany
In vitro and in vivo effects of bisphenol A on the amphibia Xenopus laevis
12:55 Lunch
13:00 Dan Pickford, Astra Zeneca Brixham Laboratories, UK
Effects of bisphenol A on larval growth, development and sexual differentiation of the African clawed frog (Xenopus laevis)
13:30 Jörg Oehlmann, Zittau University, Germany
Effects of low concentrations of bisphenol A in prosobranch molluscs
13:30 Coffee Break

SUNDAY, NOVEMBER 19, 2000

9:00 Session IIB EXPOSURE, TOXICOKINETICS AND UTEROTROPHIC ASSAY
Chair: Gisela Degen, University of Dortmund, Germany

9:00 Wade V. Welshons, University of Missouri-Columbia, USA
Low dose effects of environmental estrogens: Why bisphenol A is weak in the adult yet strong in the fetus
9:30 Gilbert Schönfelder, Freie Universität Berlin, Germany
Bisphenol A concentration in human umbilical cord blood and placenta
9:50 Gisela Degen, University of Dortmund, Germany
Comparative toxicokinetics of bisphenol A in pregnant and non-pregnant DA/Han rats
10:10 Coffee Break
10:30 Wolfgang Dekant, University of Würzburg, Germany
Comparative toxicokinetics of bisphenol A in humans and rats
Effects of bisphenol A on uterine weight, morphology and heat shock protein levels

"Dept. Biological Sciences, George Washington Univ., Washington, D.C., USA; Covance Laboratories, Inc., Vienna, VA, USA; Health Sciences Branch, CDRH, FDA, Rockville, MD, USA

We have compared the effects of the xenoestrogen, bisphenol A (BPA), and β-estradiol (E₂) on uterine wet weight, morphology and heat shock protein levels in ovariectomized B6C3F1 mice. To examine whether these effects were mediated through the estrogen receptor (ER), the ER antagonist, ICI 182,780 (ICI), was co-administered with BPA or E₂. Mice were injected subcutaneously daily for 4 days with corn oil (control), E₂, or BPA, alone or in combination with ICI. Uterine morphometric analysis and hsp90α immunocytochemistry were performed on paraffin sections, and levels of hsp90α, hsp72, hsc73 and grp94 were determined by Western blot analysis. BPA increased uterine weights at doses between 40 and 400 mg/kg/day with an EC₅₀ of 36 mg/kg/day compared to 0.97 μg/kg/day for E₂, although the maximum response to BPA was approximately one-third that to E₂. Both chemicals also increased uterine epithelial height, stromal and myometrial thickness, and levels of hsp90α, hsp72 and grp94. E₂ and BPA treatments resulted in a decrease in hsp90α immunostaining in nuclei of epithelial cells and an increase in the cytoplasm and nuclei of cells of the stroma and myometrium. All effects of E₂ and all BPA effects, except on stroma and myometrium thickness, were lowered by ICI. These results suggest that the BPA-induced increases in uterine weight, epithelial cell height, and heat shock protein levels are mediated by the estrogen receptor.

NORMAL REPRODUCTIVE ORGAN DEVELOPMENT IN CF-1 MICE FOLLOWING PRENATAL EXPOSURE TO BISPHENOL A AND IN WISTAR RATS EXPOSED TO BISPHENOL A IN THE DRINKING WATER

Sex organ weight, daily sperm production (DSP), epididymal sperm count and testis histopathology were assessed in 90-day old male offspring of female CF-1 mice exposed to Bisphenol A (BPA) (0, 0.2, 2, 20 or 200 micrograms/kg/day) on gestation days 11–17. An additional group received 0.2 micrograms/kg diethylstilbestrol (DES) orally. Clinical observations, body weight and food consumption in pregnant dams were unaffected by BPA or DES. There were no BPA or DES-related effects on growth or survival of offspring. The total number of pups per litter was slightly below controls in the 200 microgram/kg/day BPA group. This was not considered treatment-related since the litter size was within the normal range of historical controls. There were no treatment effects of BPA or DES on testes histopathology; DSP or sperm count; or on prostate, preputial gland, seminal vesicle or epididymis weight at doses previously reported to affect these organs or at doses an order of magnitude higher or lower.

10 week old Female Han-Wistar rats received drinking water containing 0, 0.01, 0.1, 1.0, or 10 ppm BPA or 0.1 ppm DES 7
days/week for 10 weeks. Exposures commenced 2 weeks prior to mating and continued through lactation. Offspring males were raised to 90 days of age with untreated drinking water and evaluated. There were no growth or reproductive effects of BPA treatment on parental females. Growth; survival; DSP; sperm count; and weight of testes, preputial gland, and prostate were unaffected in pups from BPA-treated dams. DES administration caused reduction in body weight and food consumption in dams, an increase in gestation period and a decrease in live pup number. The conclusions from both studies were that BPA did not cause effects on male reproductive organs or reproductive parameters at any dose tested, whereas DES at an effective dose caused reduced body weight, lengthened gestation and decreased live pup numbers in rats.

THE EFFECTS OF LOW AND HIGH DOSE IN UTERO EXPOSURE TO BISPHENOL A ON THE REPRODUCTIVE SYSTEM OF MALE RAT OFFSPRING

Ibrahim Chahoud, Olaf Fialkowski, Chris E. Talsness. Institute of Clinical Pharmacology and Toxicology, Benjamin Franklin Medical Center, Freie Universitaet, Berlin, Germany

We examined the effects of prenatal exposure to BPA (0.02, 0.1 and 50 mg/kg/d) or ethinyl estradiol (EE) (0.02 and 0.2 mg/kg/d) per gavage on gestation days 6 through 21 on the reproductive system of male Sprague Dawley rat offspring. The control gravid dams received a 2% cornstarch suspension (1.0 ml/100 g BW). Reproductive developmental landmarks including anogenital distance on PND’s 3, 15 and 21, testicular descent and preputial separation were recorded. The male offspring were sacrificed either on PND 70 or 170 to examine reproductive organ weights, spermatid and sperm numbers, daily sperm production, sperm morphology and testosterone concentrations. In general, feminization of the perineum was observed following exposure to all doses of BPA and to the high dose of EE, while the low dose of EE resulted in longer anogenital distances. Descent of the testes was delayed in all treatment groups except for the high dose (50 mg/kg) BPA. Preputial separation was delayed in the low dose groups (0.1 and 0.02 BPA and 0.02 EE), while it occurred earlier in the 0.2 EE group. Juvenile absolute testicular weight was significantly decreased in the lowest dose groups (0.02 BPA and 0.02 EE) and this effect remained to adulthood. Juvenile absolute epididymal weight was significantly increased in the 50 BPA group and decreased in the 0.1 and 0.02 BPA groups and the low dose EE (0.02 EE). At adulthood, the decrease in the low dose BPA (0.02) group remained. Juvenile absolute prostate weight was increased in the 50 BPA group while it was decreased in the low dose (0.02) BPA and EE groups. This effect for BPA on the prostate was no longer observed in adulthood, while it remained for the 0.02 EE groups and appeared in the 0.2 mg/kg EE group. Juvenile absolute seminal vesicle weight was decreased in the low dose (0.02) BPA and EE groups with the effect remaining only in the BPA group during adulthood. In adulthood, daily sperm production was significantly decreased in all treatment groups except at the NOEL dose (50) for BPA, while testosterone levels were increased in all treatment groups. Prenatal exposure to BPA at doses lower than the currently accepted NOEL alter reproductive system function well into adulthood. The appropriateness of existing guidelines to identify acceptable levels of exposure needs to be reexamined for substances with endocrine activity. This work was supported by a grant from the BMBF (07HORO1/7).

COMPARATIVE TOXICOKINETICS OF BISPHENOL A IN PREGNANT AND NONPREGNANT DA/HAN RATS

Despite the low oestrogenic potency of bisphenol A (BPA) there is concern that this compound, as a consequence of a potentially low clearance, might reach biologically significant levels in human and animal tissues upon environmental exposures. To address this concern we have assessed the toxicokinetics of BPA in female non-pregnant DA/Han rats upon i.v. and gavage administration. We also studied, by GC-MS analysis, the disposition of BPA in pregnant DA/Han rats and its placental transfer to fetuses in late (day 18) gestation.—The toxicokinetic properties of BPA in non-pregnant rats were found in agreement with the hypothesis of a rapid hepatic first pass elimination and with the efficient metabolic clearance of low oral doses (10 mg/kg b.w.; Upmeier et al., Arch Toxicol, online publishing dated 18.08.2000). Fluctuations in BPA plasma concentrations over time pointed to enterohepatic recirculation, and protracted absorption from the gastrointestinal tract was noticed at the higher dose of 100 mg/kg b.w.—The experiments in pregnant rats used a “destructive design” to allow a comparison of BPA levels in maternal tissues and fetuses between 5 and 120 min after i.v. administration of a 10 mg/kg b.w. dose. The data were indicative of a rapid transfer from the mother to the fetus and of an efficient extraction of BPA from the blood by the maternal liver. Maximal BPA concentrations found in fetal liver were far below those in the maternal compartment, and the general patterns of BPA concentration-time-curves resembled those found for the phytoestrogen daidzein in pregnant DA/Han rats. Supported by Umweltbundesamt and the Verband der Chemischen Industrie

COMPARATIVE TOXICOKINETICS OF BISPHENOL A IN HUMANS AND RATS

W. Dekant, T. Colnot. Institut für Toxikologie, Universität Würzburg

Bisphenol A is widely used with many potential sources of human exposures. To contribute to the characterisation of potential adverse effects of bisphenol A on humans, its disposition and excretion was compared in humans and rats. To study kinetics of excretion, bisphenol A (200 mg/kg in corn oil) was administered to three male and three female rats and excreted urine was collected for 96 h. Unchanged bisphenol A and formed metabolites (bisphenol A glucuronide and sulfate) were quantified by HPLC. In urine, app. 30 % of the administered dose of bisphenol A (mainly in the form of conjugates) were recovered. Bisphenol A and its metabolites were slowly excreted in rats in several phases suggesting enterohepatic circulation. To study human disposition and kinetics of bisphenol A excretion, human volunteers (three males and three females) were administered δ16-bisphenol A (5 mg). Blood and urine samples were taken in intervals (up to 96 h) and δ16-bisphenol A content was determined by GC/MS with chemical
ionisation and negative ion detection. d_{16}^-\text{Bisphenol A} was rapidly cleared from human blood and urine with a half-life of 3.5 hours; app. 25% of the applied d_{16}^-\text{bisphenol A} dose was recovered in the urine of the volunteers. The obtained data indicated limited absorption of bisphenol A from the gastrointestinal tract of rodents and humans after oral administration and a very efficient excretion of bisphenol A by humans, likely due to the absence of enterohepatic circulation of bisphenol A metabolites.

This work was supported by the German Umweltbundesamt.

COMPARISON OF THE HORMONAL SUSCEPTIBILITY OF DIFFERENT RAT STRAINS TO BISPHENOL A TREATMENT

*Institut für Morphologie und Tumorforschung, DSHS Köln, Germany; *Zellphysiologie & Endokrinologie, Technische Universität Dresden, Germany

Recent data favor the idea, that different strains of the rat may be differently sensitive to estrogenic stimuli. For this reason we have compared the estrogenic potency of the phytoestrogen genistien (GEN) and the xenoestrogens bisphenol A (BPA) and p-tert-octylphenol (OCT) in D/Han (DH), Sprague Dawley (SD) and Wistar (WIS) rats. Rats were treated p.o. for three days with different doses of the respective compounds and ethinylestradiol (EE). Uterus wet weight, the thickness of the uterine epithelium, the uterine gene expression of Clusterine (CLU) and complement C3 (C3) and the thickness of the vaginal epithelium were examined as parameters for the estrogenic potency. After treatment with BPA, OCT and GEN a comparable response of all analysed parameters could be observed in DH, WIS and SD rats. The uterus wet weight of SD rats responds with a reduced sensitivity to EE treatment in comparison to DH and WIS rats. In conclusion, our results indicate that all analysed rat strains respond with a comparable sensitivity to phyto- and xenoestrogen treatment. Summarising our results WS rats seem to be the most useful and sensitive rat strain to analyse the estrogenic potency of substances. This study was part of the research project: “Vergleich der östrogenen Potenz ausgewählter synthetischer Chemikalien und natürlich vorkommender Östogene; Bewertung einzelner Verbindungen” founded by the: Verband der Chemischen Industrie, Germany

ENDOCRINE DISRUPTION—A CHALLENGE FOR TOXICOLOGY

Barbara Heinrich-Hirsch, Ursula Gundert-Remy.
Department Assessment of Chemicals, Federal Institute for Health Protection of Consumers and Veterinary Medicine (BgVV)

Risk assessment of xenobiotics is a qualitative and quantitative assessment of toxic properties conventionally based on data resulting from tests in animals exposed to the substance. The assessment of dose-effect relationship includes evaluation of exposure at the site of action. More recently, emphasis is put on understanding the relationship between exposure at the site of action and the resulting effect, i.e. toxicodynamic. In this respect, toxicodynamic endpoints such as binding to receptors have been used as indicating toxic effects (surrogate endpoints).

In recent years, public health discussion has focussed on chemicals in the environment, which are capable to bind to oestrogen receptors. This binding property has been used as a surrogate for a pharmacological action. As a corollary, ‘environmental estrogens’ have been thought to have the same action known from endogenous estrogens and thereby interfere with normal function leading to reduced fertility and changes in sexual differentiation and maturation (Colborn et al., 1993).

We screened the literature on bisphenol A (BPA) for toxicodynamic endpoints, such as receptor binding, data on concentration/dose and on physiological responses. Finally, qualitative and/or quantitative data on “classical” endpoints were selected from the literature. It was the aim to demonstrate the quantitative link of toxicodynamic data in vitro with toxicodynamic data in vivo and to compare the results with the findings from conventional endpoints after testing for influences on fertility and reproduction, including sexual development.

Bisphenol A has been detected as binding to oestrogen receptors (Krishnan et al., 1993) and having estrogenic activity in several in vitro tests (Soto et al., 1995). Hence, it has been qualified as being an endocrine disrupter. However, it is until now difficult to derive a clear-cut relationship between binding to the receptor and endpoints in classical testing. This might be due to the fact that the effect may depend not only on the dose but also on the timing of the dose. Thus, the effect may vary with dose and with time so that a multidimensional approach would be necessary to evaluate the relationship between dose, time and effect.

THE ESTROGENIC ACTIVITY OF BISPHENOL-A IN VITRO AND IN VIVO

National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul 122–704, Korea

The potential estrogenic activities of bisphenol A (BPA) were investigated in vitro (E-screen and estrogen receptor competitive binding bioassays) and in vivo (uterotrophic assay and Hershberger assay). The uterotrophic effect was evaluated using mature ovariectomized (OVX) Sprague-Dawley female rats treated subcutaneously with bisphenol A (1, 5, 10, 50, and 100 mg/kg/day), E2 (0.3μg/kg), and DES (0.3μg/kg) for 3 consecutive days. The Hershberger assay was performed in immature rats castrated at 6 weeks of age. In MCF-7 cell proliferation assay (assessed by sulforhodamine B assay), E2 and DES used as positive estrogens induced maximum proliferation of MCF-7 cells at 1.0 nM, whereas BPA slightly induced MCF-7 cell proliferation only at concentration of 0.1 μM. In a competitive binding assay, E2 and DES showed inhibition of 17β-[3H]estradiol binding to the rat uterus ER with an IC50 of 1.0 nM and 0.5 nM, respectively. However, BPA had an IC50 of 5 μM, which was approximately 5,000–10,000-fold greater than that of E2 and DES. In uterotrophic assay, uterus weights were significantly increased at the dose of BPA 100 mg/kg/day in OVX female rats. However, BPA did not show any antiandrogenic effects (inhibition of sex accessory tissues re-growth induced by testosterone) in Hershberger assay. These studies demonstrate that BPA exhibits weak estrogenic activity in vitro and in vivo assay systems, but not as an antiandrogen (supported by EDs research funds of Korea FDA).

Keywords: Bisphenol-A, E-screen, ER binding, Uterotrophic assay, Hershberger assay
BIODEGRADATION OF BISPHENOL A IN AQUATIC ENVIRONMENTS: RIVER DIE-AWAY
G.M. Klecka, S.J. Gonsior, R.J. West, P.A. Goodwin, D.A. Markham, P.B. Dorn, M.R. Gargas, C.A. Staples, U. Friedrich

The biodegradability of bisphenol A (BPA) was assessed in surface waters from seven different rivers across the United States and Europe. River locations ranged from light to heavily industrialized, and included estuarine sites. Reaction mixtures were prepared from samples of water and surficial sediments collected upstream and downstream of outfalls from wastewater treatment plants known to receive BPA. Biodegradation of BPA was followed in a respirometer that measured oxygen consumption and CO₂ production. Parallel studies measuring the mineralization of [¹⁴C]BPA to ¹⁴CO₂ provided comparable results and confirmed the suitability of the respirometric method. Reaction mixtures were incubated at 20 ± 2°C in the dark and continually mixed to ensure maintenance of aerobic conditions. Rapid biodegradation of BPA was observed in the reaction mixtures following lag phases ranging from 2 to 4 days. Biodegradation half-lives for BPA were typically less than two days following the lag phase. Mineralization of BPA was observed in all river waters with average carbon dioxide yields of approximately 76 percent of the theoretical maximum (range 59–103%) at the end of the incubation period (≤18 days). Minimal degradation of BPA was observed in control mixtures sterilized by autoclaving, confirming that the disappearance of BPA was due to biological processes. Short half-lives (1.2 ± 0.7 days) were noted for BPA degradation in river waters regardless of geographic location, sampling site (i.e. upstream vs. downstream of wastewater outfalls), sediment addition (≤0.05%), and initial test chemical concentration (50 to 5,500 µg/L). Subsequent studies conducted at environmentally relevant concentrations (0.05 and 0.5 µg/L) also indicated short half-lives (3–6 days) for BPA, and support the extrapolation of the half-lives measured in this study over a wide range of environmental concentrations. The fact that BPA was degraded rapidly in surface waters taken from diverse locations in the United States and Europe, as well as in studies recently conducted in Japan, suggests that BPA degrading microorganisms are widely distributed in nature. These observations, combined with the results of previous studies from standardized biodegradation tests, as well as wastewater and environmental simulation studies, provide clear evidence that BPA is not persistent in the aquatic environment.

IN VITRO AND IN VIVO EFFECTS OF BISPHENOL A ON THE AMPHIBIAN XENOPUS LAEVIS
Werner Kloas, Gregor Levy, Christian Bügi, Ilka Lutz

Several chemical compounds present in the environment are known to affect reproductive biology of animals by endocrine disrupting effects. However, most investigations concerning effects of these so called endocrine disruptors are dealing with in vitro assays to determine estrogenic activities. The focus of our present paper is to get more information about effects of endocrine disruptors in vivo using the amphibian Xenopus laevis as a model. The most obvious adverse effect on reproductive biology of amphibians as an endpoint method is a shift of sex ratio caused by natural estrogens or xenoestrogens during larval development leading to feminization. The treatment of Xenopus tadpoles by (xeno)estrogen exposition takes about 2 months until metamorphosis is completed. Thus the aim of our experiments is to look for a faster method to detect possible biomarkers indicating adverse effects in vivo. The classical exposure experiment with 17β-estradiol and the xenoestrogens, nonylphenol and bisphenol A, was correlated with determinations of possible estrogenic biomarkers using a semiquantitative RT-PCR technique for vitellogenin (Vg)-, estrogen receptor (ER)-, androgen receptor (AR)-, and retinol binding protein (RBP)-mRNA in parallel during complete metamorphosis. No Vg-mRNA could be detected in tadpoles while mainly AR-, and RBP-mRNA showed elevated levels in whole body homogenates at the end of larval development. Short term exposure of juvenile Xenopus for 2 weeks resulted in strongly
increased levels of Vg-mRNA but also for RBP-, AR-, and ER-mRNA isolated from liver. Experiments are in progress to detect a sensitive window during larval development as well as for juveniles to determine endocrine disrupting effects by the use of the best estrogenic biomarker, respectively.

Supported by grants BW-PLUS; Oe 98007 and UBA: FKZ 299 65221/22.

DEVELOPMENTAL EXPOSURE TO A RECONSTITUTED PCB-MIXTURE ALTERS SEX-DEPENDENT BEHAVIORS AND STEROID HORMONE LEVELS IN RATS

H. Lilienthal, H. Kaya, J. Hany, A. Fastabend, A. Roth-Härrer, G. Winneke. Medical Institute of Environmental Hygiene, Düsseldorf, Germany

Our previous study revealed a reduction of aromatase activity in the brain of newborn male rats exposed to a PCB-mixture which was reconstituted according to the pattern found in human milk. In adult male littersmates feminized sweet preference behavior was detected together with reduced serum concentrations of testosterone and testes weights. The reconstituted mixture was more effective than the technical mixture (Aroclor 1254). In the present study the dose-response relationship was examined for the reconstituted mixture. Female rats were fed diets with 0, 5, 20, or 40 mg/kg diet, resulting in an average daily intake of 0, 0.5, 2, or 4 mg/kg body wt. Exposure started 50 days prior to mating and was continued until birth of the offspring. A dose-dependent elevation of sweet preference was found in adult male offspring indicating feminization of this sexually dimorphic behavior. A conditioned place preference test revealed a preference for the testosterone-paired side at the highest exposure condition. Dose-dependent reductions of serum testosterone and estradiol concentrations were detected in weanling female offspring and of testosterone in adult male littersmates. Taken together, results indicate long-lasting effects; in addition, different rat strains were studied with the goal to elucidate influences leading to divergent findings in endocrine disruption studies. (Anti-)androgenic potential of BPA was tested in orchiectomized Wistar rats.

The objective was to investigate the endocrine potential of BPA in classical test systems. Based on our experience in drug discovery we decided to choose female mice for the detection of estrogenic effects; in addition, different rat strains were studied with the goal to elucidate influences leading to divergent findings in endocrine disruption studies. (Anti-)androgenic potential of BPA was tested in orchiectomized Wistar rats.

THE EFFECTS OF LOW AND HIGH DOSES OF BPA ON (ANTI-)ANDROGENIC AND (ANTI-)ESTROGENIC PARAMETERS IN THE REPRODUCTIVE TRACT OF MICE (NMRI) AND RATS (WISTAR, SPRAGUE DAWLEY, DA/HAN)

Horst Michna, Ute Landenbach, Patrick Diel, Margot Maskus, Thorsten Schulz, Kai Smolnikar, Simone Schmidt. Institut für Morphologie und Tumorforschung, Deutsche Sporthochschule Köln, Germany

The objective was to investigate the endocrine potential of BPA in classical test systems. Based on our experience in drug discovery we decided to choose female mice for the detection of estrogenic effects; in addition, different rat strains were studied with the goal to elucidate influences leading to divergent findings in endocrine disruption studies. (Anti-)androgenic potential of BPA was tested in orchiectomized Wistar rats.

(ANTI-)Androgen Test: in positive control groups testosterone propionate stimulated prostate growth, but not statistically significant, at the suprapharmacological dose of 500 mg/kg body weight; BPA did not exhibit androgen-like effects at doses of 3, 50, 200 mg/kg after p.o. treatment. No antiandrogenic effect of BPA could be detected for these doses, whereas flutamide was able to antagonize the growth stimulating effect of testosterone propionate.

(Anti-)Estrogen Test: in ovariectomized mice a uterotrophic response was detected in positive control groups, whereas no effect on uterine growth reactions were displayed after treatment with BPA (0.002 mg, 0.2 mg, 20 mg, 50 mg/kg body weight) with the exception that the dose of 500 mg/kg body weight slightly stimulated the growth of the uterus. In Sprague Dawley rats BPA was not found to stimulate uterine wet weight at any dose applied (5 mg, 50 mg, 200 mg/kg), whereas in the Da/Han and Wistar rats a slight stimulation was detected at the highest dose (200 mg), nevertheless there were no dose dependent effects. These studies were supported by Umweltbundesamt, Verband der Chemischen Industrie, “BPA Global Industry Group”.

EFFECTS OF LOW CONCENTRATIONS OF BISPHENOL A IN PROSOBRANCH MOLLUSCS

Endocrine disruption by xenobiotics has been reported so far almost exclusively for vertebrates. Only little is known about comparable effects in invertebrates with the exception of imposex and intersex in prosobranch snails as a tributyltin response. The objective of this study was to develop an organismic invertebrate test system using the freshwater snail Marisa cornuarietis to identify endocrine-mimetic test compounds. During the laboratory experiments, the snails were exposed to a number of endocrine active model compounds, including bisphenol A (BPA) at nominal concentration ranges between 1 and 100 μg/L during 5 months using adult specimens in a complete life-cycle test for 12 months. In these experiments, BPA induced a complex syndrome of alterations in females referred to as the induction of “superfemales” even at the lowest test concentrations. Affected specimens were characterised by the formation of additional female organs, an enlargement of the accessory pallial sex glands, gross malformations of the pallial oviduct section resulting in an increased female mortality, and a massive stimulation of oocyte and spawning mass production. Because statistically significant effects were observed at the lowest nominal test concentrations (1 μg BPA/L), it can be assumed that even lower concentrations may have a negative impact on the snails. The results show that prosobranchs are sensitive to BPA-induced endocrine disruption at environmentally relevant concentrations and that especially M. cornuarietis is a promising candidate for a future organismic invertebrate model to identify endocrine-mimetic test compounds.

Funded by the Federal Environmental Agency, Berlin (project code 216 02 001/04).

HUMAN EXPOSURE TO BISPHENOLS

N. Olea. Lab. Medical Investigations, University of Granada, Spain
Bisphenols are a group of endocrine disrupting compounds that were initially designed as synthetic estrogenic hormones and now form a part of innumerable manufactured products. Bisphenol-A is the best-studied substance of the whole series of bisphenols. It is used for the production of polycarbonates and polyester epoxy resins, which account for nearly 90% of the European production of bisphenol-A. It is also employed in the manufacture of thermal-pressure sensitive paper, PVC, polyls and polyurethane, brake fluid and tyres and in polyamide processing. The EU consumption of bisphenol-A accounts for more than 600,000 tonnes per year. The estrogenicity of bisphenol was first documented in 1936, when bisphenol-F was already used as base monomer in bakelite, developed in 1909. Exposure among both professional and general populations has been documented. Among the former, dermal and inhalation are the most common routes, but for consumers, exposure comes from the ingestion of food and beverages in contact with epoxy resin coatings, polycarbonate containers, tableware devices, baby bottles, pipe lining and from medical applications, such as the use of bisphenol-A in dental composites and sealants. The bioaccumulation of bisphenols has also been documented, specially for those containing chlorine and bromine, as a result of their fat solubility. It can be affirmed that: i) bisphenols is a broad term that includes various compounds that are structurally similar to bisphenol-A; ii) human exposure to bisphenols is a significant and demonstrated phenomenon; iii) the estrogenicity of bisphenols is of particular concern.

EFFECTS OF BISPHENOL A ON LARVAL GROWTH, DEVELOPMENT AND SEXUAL DIFFERENTIATION OF THE AFRICAN CLAWED FROG (XENOPUS LAEVIS)

Daniel Pickford, John Caunter, Malcolm Hetheridge, Tom Hutchinson. Brixham Environmental Laboratory, AstraZeneca Global Safety Health and Environment, Brixham, Devon, United Kingdom

In a GLP-compliant study, commissioned by the Bisphenol A Global Industry Group, we investigated the effect of larval exposure to Bisphenol A (BPA) on growth, development and sexual differentiation in *Xenopus laevis*. Larvae were maintained in flow-through conditions at 22 ± 1°C and exposed to BPA at nominal concentrations of 1.0, 2.3, 10, 23, 100, 500 μg l⁻¹, from developmental stages 43/45 (beginning of independent feeding) through to 66 (completion of metamorphosis). Each test concentration, plus dilution water control (DWC) and positive control (PC, 17β-estradiol, 2.7 μg l⁻¹) employed 4 replicate test vessels with a starting density of 40 larvae/tank. Individual froglets were removed from test vessels upon reaching stage 66, and the study was terminated at 90 days. Froglets were dissected and sex was determined by inspection of gross gonadal morphology. Test concentrations of BPA had no effect on survival, growth, developmental stage distributions at exposure days 32 and 62, or mean time to completion of metamorphosis, when compared to DWC. Analysis of post-metamorphic sex ratio by G-test indicated no significant deviations from expected (50:50) sex ratio, in the DWC or any of the BPA test concentrations. In contrast, sex ratio in the PC (31% male, replicates pooled) deviated significantly from expected, and indicated that larval had been feminised by exposure to the natural estrogen, 17β-estradiol. Exposure to BPA in the concentration range 1.0 - 500 μg l⁻¹ in flow-through conditions had no observable effect on larval growth, development or sexual differentiation (as determined by gross gonadal morphology) in this study.

PROSTATIC GROWTH RESPONSE IN SPRAGUE-DAWLEY AND FISHER 344 RATS TO NEONATAL EXPOSURE TO DIFFERENT CONCENTRATIONS OF ESTRADIOL BENZOATE

Oliver Putz, Christian Schwartz, Gerald A. LeBlanc, Ralph L. Cooper, Gail S. Prins. *Department of Urology, University of Illinois College of Medicine, Chicago, Illinois; Department of Toxicology, North Carolina State University, Raleigh, North Carolina; Endocrinology Branch, Reproductive Toxicology Division, National Health and Environment Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina*

Brief exposure of rats to high doses of natural estrogens early in life results in permanent alterations of the prostate gland, which include differentiation defects, altered gene expression and dysplasia with aging. Whether exposure to estrogen below the no-observed-adverse-effect-levels (NOAEL) causes similar or other effects is being controversially discussed. Possible variables making the assessment of the low-dose effect difficult include genetic differences between animal species and strains predisposing for differential responses to estrogen exposure. It was the objective of the current study to determine the dose-response of prostatic growth to neonatal exposure to natural estrogen in two different rat strains, the Sprague-Dawley (SD) and Fisher 344 (F344) rats. SD rats were treated on postnatal days (PND) 1, 3 and 5 with a 7-log range of doses (0.0001 to 100.0 μg/injection) of β-estradiol-3-benzoate (EB) by subcutaneous injections in 25 μl of peanut-oil (Arachis) as vehicle. Animals were sacrificed on PND 35 and 90, the prostates were microdissected, weighed and frozen for immunohistochemistry. F344 rats were neonatally exposed on PND 1, 3, and 5 to 0.001, 0.1 or 10.0 μg/injection EB, respectively, euthanized on PND 90, and organs of interest removed. Pubertal markers (i.e. preputial separation, hepatic testosterone biotransformation enzymes) were monitored and measured. On PND 35, ventral, lateral, and dorsal prostate weights of SD rats treated with low doses of EB (0.001 μg/injection) were increased, while high doses (10, 100 μg/injection) reduced ventral prostate weights. On PND 90, no low dose effect was observed and only high-dose suppression of prostate sizes were found. Like in SD rats, prostate weights of low-dosed F344 rats did not display significant differences on PND 90. However, high dose treatment cause greater size reductions and differentiation effects than in SD rats. Likewise, responses of other steroid-sensitive reproductive organs (e.g., testes, epididymes, seminal vesicles) were greater than in the SD rat. Our results suggest that low doses of natural estrogens can cause increased prostate sizes around puberty, but not permanently into adult age. They furthermore confirm previous reports that F344 rats are more sensitive to estrogen treatment than SD rats, and that they therefore may be the preferential in vivo model for assessing effects of weak synthetic estrogens on the development of the male reproductive tract.

BISPHENOLS INTERACTIONS IN THE ESTROGEN RECEPTOR SIGNAL TRANSDUCTION PATHWAY

Bisphenols and stilbenes demonstrated their estrogenicity in vivo in 1936 when it was reported the increase in uterine weight in rats after treatment with compounds containing two phenolic rings with hydroxyl groups in para positions. The stilbene diethylstilbestrol had pharmaceutical utility as a synthetic estrogen and bisphenols occupy a predominant position in the plastic industry. We have compared estradiol and different bisphenols (A basic bis-hydroxyphenyl structure to which we added to the central carbon alkanes—ethane to heptane—, ketone, propanol, perfluoropropane and methylphenol) in the pathway of estrogen receptor signal transduction in MCF-7 cells: i) Induction of mRNA of pS2, ii) Induction of the luciferase reporter gene placed under an estrogen-responsive element (ERE) in the MVLN cell line derived from MCF-7 cells, iii) Quantification of the estrogen induced progesterone receptor, iv) Quantification of the secreted pS2 protein, and v) Cell proliferation in the E-Screen bioassay. All the bisphenols tested elicited a full agonist response in all the assays. However some differences were found among some: i) The concentration needed to induce a full estrogenic response (Potency), ii) The response range observed for estradiol and the bisphenols (Efficiency), and iii) The amplitude of response enable differentiation between an agonist, partial agonist and nil effect. This study demonstrates that bisphenols exerted estrogenic responses at different levels in the estrogen receptor transduction signal pathway but at higher concentrations than endogenous estrogens. The proliferation bioassay (E-Screen) was the most sensitive and effective among the four assays used.

MOLECULAR ASPECTS OF LOW AND HIGH DOSE BISPHENOL A PREGNATAL EXPOSURE

G. Schönfelder, B. Flick, L. Mayr, C. Talsness, M. Paul, I. Chahoud. Inst. of Clinical Pharmacology and Toxicology, Benjamin Franklin Medical Center, FU Berlin, Germany

Bisphenol A (BPA) is among those industrial compounds which generate concern over adverse effects of environmental estrogens on wildlife and humans. BPA binds to the estrogen receptor alpha (ERα) and seems to be weakly estrogenic compared to 17β-estradiol (E2). In contrast, other data suggest that BPA has dose-dependent anti-estrogen activities. Female offspring were exposed in utero on gestation days 6 through 21 to either 0.1 or 50 mg/kg/d BPA and 0.2 mg/kg/d (E2). Histological analyses showed striking morphological changes in the differentiation, proliferation and cornification of the vagina from BPA treated animals. We, therefore, investigated the expression of ERα and estrogen receptor beta (ERβ) variants in the vagina of rat offspring during the estrous cycle at both molecular and protein levels using Western-Blot and RT-PCR analyses. For the first time, we demonstrate that the full-length ERα variant is not expressed during estrus at the protein level in the vagina of female offspring exposed prenatally to either dose of BPA compared to the control group. However, ERα-expression does not differ between the control group and the BPA exposed offspring during the diestrus stage. Furthermore, we could detect the expression of TERP-1 in the vagina of rat offspring. TERP-1,a truncated estrogen receptor product with functional activity is highly expressed in the diestrus stage, whereas its expression is decreased or absent in the estrus stage. Offspring exposed to E2 during gestation showed either a decreased or no expression of ERα in their vagina during the estrus stage. In addition we could not observe ERβ-expression at the protein level in the rat vaginal tissue from any group.

In conclusion this is the first finding which demonstrates that BPA affects the expression of ERα in vivo following in utero exposure of rats. Estrous cycle-dependent estrogen receptor expression is important for growth, differentiation and cornification of the vaginal epithelial cells. We therefore suggest that the loss of ERα expression in the vagina during the estrus stage leads to our previous morphological findings. The role of TERP-1-expression in rat remains unclear and has to be investigated in greater detail.

BISPHENOL A CONCENTRATION IN HUMAN UMBILICAL CORD BLOOD AND PLACENTA

G. Schönfelder, W. Wittfoht, H. Hopp, A. Mutz, G. Halis, C. Talsness, M. Paul, I. Chahoud. Inst of Clinical Pharmacology and Toxicology, Dept. of Gynecology and Obstetrics, Benjamin Franklin Medical Center, FU Berlin, Germany

Bisphenol A (BPA) is an industrial compound highly employed in the manufacture of epoxy, polyester-styrene and polycarbonate resins with distinct physicochemical characteristics. These resins have uses in human health applications. When the polymer is in contact with food, especially at high temperatures (e.g., heated processed canned food or microwaved food) the ability of BPA to migrate from the polymer to the food has been described. Many scientists and regulatory agencies are concerned about the environmental effects of BPA. Furthermore, it is suggested that the amounts of BPA to which we are exposed could alter the reproductive organs of developing rodents. The EU Commission established a specific migration limit for BPA of 3 mg per kg because of fears that harmful quantities of BPA could leach into food. Until now, there is little known regarding the extent of exposure of human pregnant mothers and their fetuses to BPA. Therefore, we established an analytical method for determining parent BPA in the placenta and plasma of human mothers and fetuses. Blood was taken from mothers (MB) during and after pregnancy. Human umbilical cord blood (CB) was taken from the umbilical vein after the placenta was expelled. Plasma was obtained by centrifugation of CB and MB samples which were collected by drainage of blood into sterile tubes not leaching BPA into the blood or plasma sample. Placental tissue was homogenized and solubilized. After assessing analytical reagents from different suppliers, altering the way of derivatization and introducing special methods to homogenize placental tissue, we developed a chemical derivatization-gas chromatography (GC) / mass spectrometry (MS) method to analyze parent BPA at concentrations less than 1 µg/ml. For the first time, we demonstrate that parent BPA exists at concentrations between 3 and 100 ng/g of human placenta.

According to research conducted in Japan by O. Takahashi et al. (Environ. Health Perspect. 2000 Oct;108(10):931–935) on rats showing that the placenta does not serve as a barrier to transimission of BPA, we suggest that parent BPA can be transferred from the human mother to the fetus via the placenta. Although parent BPA is rapidly eliminated by first-pass metabolism following oral
administration, parent BPA can be found in human placental tissue following normal food consumption.

ENDOCRINE DISRUPTION: CURRENT STRATEGIES IN THE US
Ellen K. Silbergeld, Susan Laessig, University of Maryland Medical School, Department of Epidemiology

The endocrine disruptor hypothesis was originally inspired by reports of apparent geographic and temporal trends in adverse health effects observed in wildlife and human populations. These ecological reports were correlated with trends in production, use, or environmental levels of persistent bioaccumulated halogenated organic compounds. Some of these trends, such as apparent decreases in sperm count, are more complex and less generalized than first reported. Studies associating cancer risks with exposure to these chemicals have been contradictory or inconclusive. The suggestion that inferences can be readily drawn from wildlife to humans may not hold for all endpoints, particularly those related to development. Some of the observed effects of EDCs in nonmammalian species, such as sex reversal, cannot occur in mammals, while effects such as reproductive failure of populations, are unlikely to be associated with environmental exposures. Some relatively sensitive effects of EDCs in mammals, such as the vaginal dysmorphogenesis induced by TCDD, may be species-specific. Bisphenol A (BPA) represents the category of less persistent but ubiquitous compounds present in many consumer products. Studies of its effects on mammalian development support the current hypothesis that development may be most sensitive to endocrine disrupting chemicals, particularly during periods when physiological systems are organized by maturational changes in endogenous hormone exposure. Research in our laboratory suggests that BPA has a different spectrum of estrogenic activity in vivo than does DES or chlordecone. BPA, like DES and CD, reduced relative anogenital distance in female rats after prenatal exposure; however, BPA did not reduce prostate or seminal vesicle weight in contrast to DES. While CD and DES had a transient effect to increase the size of the sexually dimorphic nucleus, BPA was not associated with increased size of this nucleus as compared to control females. These results suggest that it is not clear how best to develop tests to identify potential EDCs and how to interpret the results of these tests. In vitro systems may not predict in vivo responses. Animal studies may not provide clear indicators for epidemiological studies. EDCs like BPA may be selective endocrine modulators, exerting agonist-type effects in some tissues at some stages of development, and no response in other tissues or at other stages. Research supported by US Department of Veterans Affairs.

PROLIFERATIVE EFFECTS OF IN UTERO EXPOSURE TO BISPHENOL A ON MAMMARY GLAND DEVELOPMENT
C.M. Markey, E. Luque, M. Munoz de Toro, C. Sonnenschein, A.M. Soto. "Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111-1800, USA; "Department of Human Physiology, Faculty of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Santa Fe, 3000 Argentina

Exposure to estrogens throughout life has been established as a major risk factor for the development of breast cancer. Recent epidemiological and experimental studies reveal that exposure to high levels of estrogens during intrauterine development of the fetus correlates with an increased incidence of breast cancer in the adult. The introduction of estrogenic chemicals into the environment therefore poses a very real threat to human health, particularly if exposure occurs during critical periods of fetal histogenesis and organogenesis. Bisphenol A (BPA) is a monomer used in the manufacture of resins (linings of tin cans, dental sealants) and plastics (babies formula bottles, food storage containers) that has been shown both in vitro and in vivo to exhibit an estrogenic nature. Under normal conditions of use, this chemical leaches from such products into foods, beverages and saliva therefore causing potential for fetal exposure. The aim of this study was to determine the effects of in utero exposure to environmentally relevant concentrations of BPA on the development of the mammary gland and to establish tissue changes that may precede carcinogenesis. The doses were arbitrarily chosen to be 4,000 and 400-fold lower than those needed to induce an urotrophic response in the immature CD-1 mouse. Pregnant CD-1 mice were implanted with subcutaneous pumps that delivered either DMSO vehicle, 25 µg/kg body weight BPA, or 250 µg/kg body weight BPA on day 8 of gestation. The genital tract and mammary glands were collected from female offspring at 10 days, 1 and 6 months of age. Among the pathologies seen in these tissues, the mammary gland showed the most striking histoarchitectural changes. No differences between control and BPA-treated groups were apparent at birth and 10 days of age. At puberty there were differences in ductal elongation between the groups. At 6 months of age, quantitative analysis of whole-mounted tissues revealed an increase in the percentage of ducts, terminal ducts (TD), terminal end buds (TEB) and alveolar buds (AB) in both BPA-treated groups. These findings demonstrate that environmentally relevant levels of BPA, when administered during intrauterine development, can induce dramatic proliferative and maturational changes in mammary gland tissue that are consistent with estrogenic activity. Further, the ability of this chemical to alter tissue organization highlights the importance of discerning the role that environmental estrogens may be playing in the increased incidence of breast cancer seen over the last 30 years.

A MULTI-GENERATION STUDY OF THE EFFECTS OF BISPHENOL-A ON THE FATHEAD MINNOW (PIMPEHales PROMELAS)
P. Sohoni, C.R. Tyler, K. Hurd, J. Caunter, M. Hetheridge, T. Williams, C. Woods, M. Evans, R. Toy, M. Gargas, J.P. Sumpter. "Department of Biological Sciences, Brunel University, Uxbridge, UB8 3PH, UK; School of Biological Sciences, Hatherley Laboratories, The Queens Drive, Exeter, EX4 4QJ, UK; 3AstraZeneca, Brixham Environmental Laboratory, Freshwater Quarry, Devon, TQ5 8BA, UK; 4Shell Chemicals Ltd, London, SE1 7NA, UK; 5The Society of the Plastics Industry Inc., 1801K St. NW, Suite 600K, Washington, D.C. USA

To investigate the possible effects of long-term exposure to Bisphenol-A (BPA), a multi-generation study was conducted, in which 3 generations of the fathead minnow were exposed to water concentrations of BPA covering the range 1 to 1280 µg/litre. Exposure to BPA began when the FO generation fish were subadults, and the experiment lasted a total of 431 days, so that the F1
generation fish were exposed for all of their lives, and the F2 generation fish until 60 days post-hatch. The two highest concentrations of BPA (640 and 1280 μg/litre) inhibited growth of both the FO and F1 generations. Vitellogenin concentrations, which are indicative of exposure to an oestrogenic chemical, were markedly elevated in males exposed to concentrations of BPA at and above 160 μg/litre. Female fish, which had much higher vitellogenin concentrations initially, showed much less of a response to BPA. Gonadal growth was inhibited in both sexes by the two highest concentrations of BPA. The most sensitive parameter affected by BPA was spermatogenesis, which was inhibited at concentrations above 16 μg/litre. However, reproductive output, assessed by measuring egg production and hatchability, was affected only at the two highest concentrations of BPA. Esssentially the same effects occurred in both the FO and F1 generations. However, the F1 generation appeared somewhat more sensitive (lower concentrations produced significant effects), but this comparison was complicated by the fact that the FO generation fish were exposed to BPA for only the second half of their lives, whereas the F1 generation fish were exposed throughout their entire lives. The results demonstrate that BPA acts as a weak oestrogen to fish when administered via the water, with effects on breeding at and above a concentration of 640 μg/litre.

THE EFFECTS OF LOW AND HIGH DOSE IN UTERO EXPOSURE TO BISPHENOL A ON THE REPRODUCTIVE SYSTEM OF FEMALE RAT OFFSPRING

Chris E. Talsness, Xiangdong Wu, Werner Wittfoht, Ibrahim Chahoud. Institute of Clinical Pharmacology and Toxicology, Benjamin Franklin Medical Center, Freie Universitaet, Berlin, Germany

The endocrine active substance, bisphenol A (BPA), is ubiquitously employed in food and beverage containers and is also a component of some dental preparations. Concern exists whether the potential effects of BPA on the fetus, particularly at doses below the currently accepted NOEL (50 mg/kg/d) for this compound, have been sufficiently characterized. We examined the effects of prenatal exposure to BPA (0.02, 0.1 and 50 mg/kg/d) or ethinyl estradiol (EE) (0.02 and 0.2 mg/kg/d) per gavage on gestation days 6 through 21 on the reproductive system of female Sprague Dawley rat offspring. The control gravid dams received a 2% cornstarch suspension (1.0 ml/100 g BW). Beginning on postnatal day 35, the female offspring were examined for vaginal opening, an accepted landmark of sexual maturation. At approximately 13 weeks of age, vaginal cytology was performed for 21 consecutive days to evaluate the estrous cycle. The females were sacrificed either in estrus or diestrus at approximately 16 weeks of age to evaluate reproductive organ weights and diestrus progesterone concentrations. Sexual maturation was significantly delayed following exposure to BPA and EE with the greatest delays observed in the low dose groups. An alteration in the reproductive cycle in the form of extended estrus phases was detected in all treatment groups. The mean progesterone concentration in diestrus was significantly decreased in the low dose (0.02) BPA and EE groups, while it was significantly increased in the high dose BPA (50) group. Prenatal exposure to BPA at doses corresponding to, and below its NOEL, alters postnatal reproductive system function in the female Sprague Dawley rat. These changes did not occur in a classical dose-dependent fashion indicating that current toxicological assessment guidelines for evaluating endocrine active compounds need to be reassessed. This work was supported by a grant from the BMBF (07HORO17).

THREE-GENERATION REPRODUCTIVE TOXICITY STUDY OF BISPHENOL A (BPA) ADMINISTERED IN THE DIET TO CD® (SPRAGUE-DAWLEY) RATS

BPA is a high production volume chemical used principally as a monomer in the manufacture of polycarbonate plastics and epoxy resins. It can produce some "estrogen-like" effects at high gavage and parenteral doses; initial studies (not replicated) have reported that it is also active at low doses. Therefore, BPA (>99.5% pure) was evaluated in a multigeneration reproductive toxicity study (under U.S. EPA OPPTS 1998 testing guidelines with additions and in compliance with EPA GLPs) at dietary concentrations of 0.015, 0.3, 4.5, 75, 750, and 7500 ppm, available ad libitum to 30 animals/sex/dose for three generations, one litter/generation, through F3 adult offspring. Adult systemic toxicity was present at 750 ppm (approximately 50 mg BPA/kg/day) and 7500 ppm (500 mg/kg/day) for all adult generations, expressed as reduced body weights (BW) and BW gains during prebreed (both sexes) and gestation and lactation, reduced absolute and increased relative weaning and adult organ weights, and increased incidences of renal tubular degeneration and chronic hepatic inflammation only at 7500 ppm in F0, F1, and F2 (but not F3) females. Reproductive organ histopathology and function were not affected in either sex in any generation. Paired ovarian weights and total and live pups/litter on pnd 0 were decreased at 7500 ppm (in the absence of any increase in prenatal postimplantation loss) in the presence of substantial maternal toxicity in all generations. There were no treatment-related effects in any generation on parental or offspring mortality, clinical signs of toxicity, or on mating, fertility, or gestational indices, ovarian primordial follicle counts, estrous cyclicity, precoital interval, gestational length, offspring sex ratios or survival, on nipple/areola retention in preweaning F1, F2, or F3 males, on adult F0, F1, F2, and F3 male epididymal sperm number, motility, or morphology, on adult F0, F1, F2, and F3 male testicular homogenization-resistant spermatid head counts, daily sperm production (DSP), or efficiency of DSP. At 7500 ppm, there were also delays in acquisition of puberty (vaginal patency and preputial separation) in F1, F2, and F3 offspring of both sexes, associated with reduced BW, which began during lactation (pnd 7) and continued through adulthood. Anogenital distance on pnd 0 was unaffected for F2 and F3 males and F3 females, and increased (by 0.03–0.05 mm) in F2 females at 0.015, 0.3, 4.5, and 750 ppm, in the absence of any effects on pnd 0 pup body weights, with no...
dose-response pattern, and no developmental or reproductive sequel. There were no consistent or persistent treatment-related effects of dietary BPA exposure on any adult or offspring parameters at 0.015, 0.3, 4.5, or 75 ppm (equivalent to approximately 0.001, 0.02, 0.3, or 5 mg BPA/kg/day) in rats in this study.

In conclusion:

- The adult systemic toxicity NOAEL for both sexes was 75 ppm (approximately 5 mg BPA/kg/day).
- The reproductive and postnatal toxicity NOAELs were 750 ppm (approximately 50 mg BPA/kg/day).
- There were no treatment-related low dose effects.
- There was no evidence of a non-monotonic dose response.
- The absence of treatment-related low dose effects in this study are consistent with the findings from a two-generation reproduction study in rats recently completed by the Chemical Compound Safety Research Institute, Hokkaido, Japan, in which CD® rats, 25/sex/group, were gavaged daily with 0, 0.2, 2, 20, or 200 μg BPA/kg/day; there were no treatment-related effects of BPA on any parameters examined at any dose.

This work was sponsored by the Society of the Plastics Industry, Inc., Washington, DC

HIGH SENSITIVITY OF THE FETAL PROSTATE TO ENDOGENOUS AND ENVIRONMENTAL ESTROGENS

Estrogens are now known to modulate development of both the male and female reproductive organs, although estrogen is not essential for development of these organs. We have previously shown in both rats and mice that a very small difference in serum estradiol in male fetuses is correlated with prostate size during fetal life and in adulthood. We extended these findings by examining male CF-1 mice that were identified at Cesarean delivery as representative of biological events in same sex littermates of primary hepatocytes from rats, mice and humans. Analysis of metabolites was by radiochemical HPLC, with identification of plasma metabolites by LC-ESI/MS, and in vitro metabolites by LC/MS/MS. In vivo, the relative bioavailability of BPA and plasma radioactivity was markedly lower following oral administration as compared to subcutaneous (sc) or intraperitoneal (ip) administration. The major fraction of plasma radioactivity following oral dosing was comprised of the monoglucuronide conjugate of BPA (68–100%). Up to four additional unidentified metabolites were present only in the plasma of animals dosed ip or sc; one of these was tentatively identified as the monosulfate conjugate of BPA. In vitro, the monoglucuronide was the major metabolite in all species/strains, except in F344 rats where a mixed sulfate/glucuronide conjugate predominated. The initial rates of metabolism in hepatocytes followed the order of mice > rats > humans, however when extrapolated to the whole liver, the differences in the number of cells/gm of liver reverse this relationship to humans > rats > mice. By 3 hrs, the rate of metabolism was similar in all species with BPA converted completely to conjugates. In conclusion, these in vivo results demonstrated that oral administration resulted in very low bioavailability of BPA in rats; this result is also expected in humans due to the differences in liver mass and the similarity in the in vitro metabolic profiles across species.

LACK OF EFFECTS OF PERINATAL EXPOSURE TO LOW DOSES OF BISPHENOL A ON MALE RAT OFFSPRING VENTRAL PROSTATE GLANDS

F. Welsch1, B.A. Elswick, D.B. Janszen, C.L. Robinette. CIIT, Research Triangle Park, NC 27709, USA

A replicate block design study using one or two pups/litter as representative of biological events in same sex litters revealed an apparent increase in ventral prostate (VP) tissue fresh weights of 6 months old male F1 Sprague–Dawley (SD) offspring. Their mothers were exposed to a wide dose range of BPA via drinking water (Toxicol. Sci. 54, Suppl., 256A, 2000). The VP weights were highly variable, an observation confirmed by other CIIT studies with full litter complements. Very low VP weights were particularly striking in the one pup/litter control animals which raised concerns about sample size. A follow-up
Bisphenol A (BPA) is widely used in polycarbonates and epoxy resins. Since BPA leaches from these sources, human exposures may be significant. In rodents, fetal exposure to BPA at doses below those that stimulate adult estrogenic responses can enlarge the prostate and accelerate female puberty. To determine circulating levels of BPA present after developmentally-active low doses, pregnant mice were fed tritium-labeled BPA in oil at 2 or 20 µg/kg body weight, either once or multiple times (4 to 8 daily doses), ending on day 18 of gestation. While maternal serum BPA declined rapidly over the first 3 hours, the concentration then stabilized at a level maintained past 24 hours. This stable circulating concentration was increased following multiple daily doses in pregnant females, although not in nonpregnant females. Twenty-four hours after the last of 7–8 daily doses, serum BPA averaged 100 pg/ml (0.44 nM). However, substantial individual variation in BPA levels was observed, and may identify a sensitive subpopulation particularly susceptible to endocrine disruption by BPA. Bioaccumulation of BPA in maternal circulation, at a time when the fetus is most vulnerable to permanent, non-reversible changes, may represent a significant source of exposure to the fetus and may contribute to the high sensitivity of the fetus to BPA. Supported by UMC VMFC0018 and NIH ES08293.

WHY BISPHENOL A IS WEAK IN THE ADULT YET STRONG IN THE FETUS

W.V. Welshons*, J.A. Taylor*, B.M. Judy*, F.S. vom Saal¹, ¹Dept. Veterinary Biomedical Sciences, ¹Biological Sciences University of Missouri, Columbia, MO 65211-5120

Bisphenol A (BPA) is widely used in polycarbonates and epoxy resins. Since BPA leaches from these sources, human exposures may be significant. In rodents, fetal exposure to BPA at doses below those that stimulate adult estrogenic responses can enlarge the prostate and accelerate female puberty. To determine circulating levels of BPA present after developmentally-active low doses, pregnant mice were fed tritium-labeled BPA in oil at 2 or 20 µg/kg body weight, either once or multiple times (4 to 8 daily doses), ending on day 18 of gestation. While maternal serum BPA declined rapidly over the first 3 hours, the concentration then stabilized at a level maintained past 24 hours. This stable circulating concentration was increased following multiple daily doses in pregnant females, although not in nonpregnant females. Twenty-four hours after the last of 7–8 daily doses, serum BPA averaged 100 pg/ml (0.44 nM). However, substantial individual variation in BPA levels was observed, and may identify a sensitive subpopulation particularly susceptible to endocrine disruption by BPA. Bioaccumulation of BPA in maternal circulation, at a time when the fetus is most vulnerable to permanent, non-reversible changes, may represent a significant source of exposure to the fetus and may contribute to the high sensitivity of the fetus to BPA. Supported by UMC VMFC0018 and NIH ES08293.

EFFECTS OF XENOESTROGENS ON THE TOTAL SERTOLI CELL NUMBER—DETERMINATION OF THE VALIDITY OF UNBIASED STEREOLOGY

J. Wistuba*, M.H. Brinkworth*, S. Schlatt*, I. Chahoud†, E. Nieschlag‡. *Institute for Reproductive Medicine of the University Münster; †Institute for Clinical Pharmacology and Toxicology FU Berlin

To assess effects of Bisphenol A on the total Sertoli cell number in the testis the optical dissector is an ideal tool, but the observation needs to be unbiased and valid. This method involves the physical dissection of the testis. A number of thick sections per fragment are cut and evaluated by focusing through several planes along the z-axis. The observed fields are chosen by systematic randomisation. The scores allow calculation and quantification of the cells of a defined volume by nearly complete preservation of the structural integrity. A number of fields is sampled in every section. Intersectional and intrasectional variances, the number of zero-counts without the observed cell type and the number of counted volumes per section can influence the results of the scores. To validate the method testis fragments have been sampled for a group of 5 control animals and 7 animals treated with Bisphenol A perinatally. For each fragment between 5 and 60 volumes per slide were counted and the total cell numbers, the coefficient of variation (cv) and the amount of zero counts were calculated and compared. The results of this study show that at least 40 volumes per slide have to be counted to calculate valid data. The results vary if a smaller number of counted volumes is used for calculation. The validity of the procedure was confirmed by the fact that neither intrafragmental nor intrasectional differences were seen, but some intersectional variance indicate that the fragments are not always homogeneous (gsf 07HOR 03/9).
IDENTIFICATION OF BISPHENOL-A
CHLORODERIVATIVES IN DRINKING CHLORINATED
WATER. ESTROGENIC PROPERTIES
*Department of Analytical Chemistry, **Department of Organic Chemistry,
†Lab of Medical Investigations, University of Granada, E-18071 Granada, Spain

Bisphenol A (BPA) is an estrogenic monomer widely used in the
manufacture of epoxy and phenolic resins, polycarbonates, poly-
acrilates and corrosion-resistant unsaturated polyester-styrene res-
ins. It may be found in a diverse range of products including the
interior coatings of food cans and filters, water containers, dental
composites and sealants. Here the chlorination reaction of BPA in
chlorinated tap water is studied using Spectrofluorimetry and
GC-MS analysis. The different chlorinated BPA derivatives (2–5)
were synthesized, isolated and identified. The structure of these
compounds were univocally established by Ms, 1H-NMR, and
13C–NMR spectroscopy (Figure). The influence of different ex-

perimental parameters (pH, reaction time, chlorine concentration
and presence of cationic and anionic species) is also established.
The present study also investigates the estrogenticity of these chlo-
rinated bisphenols in the E-Screen bioassay. The proliferative
effect (PE) of chlorinated bisphenols was significantly greater than
1 for all the compounds tested. Chlorinated BPA with the
lowest degree of chlorination showed highest estrogenic potencies.
In comparison with the PE of estradiol, all the positive compounds
showed a full to partial agonistic response that produced cell yields
ranging from 85% of estradiol-induced yield for bisphenol-A to
30% for tetrachlorine bisphenol-A derivative (5).