Institut für Molekulare Biowissenschaften

einricht_mbw

Forschung

Derzeit elf Arbeitsgruppen erforschen am Institut die verschiedensten molekularen Aspekte des Lebens.

Im Fokus stehen dabei vor allem Mikroorganismen und Pflanzen. Membranbiologie ist traditionell eine der Stärken des Instituts. Im Zentrum stehen Analysen der Struktur und Funktion membranständiger Proteine, deren Regulation und Anbindung an intrazelluläre Signalkaskaden. Im Rahmen der Biotechnologie wird an der Entwicklung mikrobieller Zellfabriken durch klassische oder rekombinante Verfahren zur Überproduktion von verschiedensten Chemikalien und Enzymen gearbeitet. Ein neuer Aspekt ist die Identifizierung und Charakterisierung neuer Metabolite im Sekundärstoffwechsel insektenpathogener Mikroben und deren Anwendung. Es werden Stoffwechselwege gezielt verändert, um zum Beispiel mit Hefen Biokraftstoffe zu produzieren oder Therapieansätze für die Verbesserung der zellulären Abwehr zu entwickeln.

In der Mikrobiellen Physiologie liegt der Schwerpunkt auf der Stoffwechselphysiologie, ihrer Regulation und den genetischen Grundlagen in Archäen, Bakterien und Eukaryoten. Die Ergebnisse bilden die Grundlage für Analysen der Membranbiologie und der Biotechnologie, so dass eine enge Vernetzung im Fachbereich und darüber hinaus besteht. Schwerpunkte der Forschungsrichtung Molekulare Pflanzenphysiologie sind der Energiestoffwechsel in photosynthetischen Organismen und die diesem Stoffwechsel zugrunde liegenden Interaktionen der Organellen. Dabei stehen physiologische, strukturell biochemische und genetische Untersuchungen im Vordergrund.

Im Forschungsschwerpunkt Degenerative Prozesse und molekularer Stress liegt der Fokus auf der Untersuchung der molekularen Mechanismen des Alterns und insbesondere der Rolle der Mitochondrien in diesem Prozess, sowie auf der Analyse der zellulären Antwort auf Hitze- und Photostress. Die am Schwerpunkt Schutzfunktion von Carotinoiden beteiligten Gruppen bearbeiten den molekularen Mechanismus der Carotinoid- Wirkung bei Starklicht sowie der Protektion gegen reaktive Sauerstoffspezies und Membranschädigungen, die von externen Faktoren hervorgerufen werden. Bei den regulatorischen RNAs geht es um die strukturelle und funktionale Analyse von regulatorischen nicht-kodierenden RNAs, deren Interaktion mit Proteinen sowie ihre biologische Funktion und zelluläre Regulation.


Kolloquium/ Talks

Please find more information here

Talks already held:

Di 12.04.2022

Biozentrum

Dr. Fragkostefanakis

Orchestration of plant heat stress response and thermotolerance by transcription factors and splicing regulators
Dr. Sotirios Fragkostefanais, Goethe Universität Frankfurt

Plants are often exposed to heat stress conditions during the warmer period of the year. Their survival depends on the activation of heat stress response, which comprises the induction of hundreds of genes including the essential for thermotolerance, heat shock proteins (HSPs). Heat stress transcription factors (HSFs) are the core regulators of heat stress response. Using tomato as a model, we have characterized four HSFs which control the major phases of the stress response: activation, acclimation and attenuation. In addition to transcription, high temperatures affect the pre-mRNA splicing profile of many genes, including several HSFs. In the case of HsfA2 and HsfA7, alternative splicing leads to the generation of protein isoforms with distinct properties and contribution to stress response, suggesting that next to transcription factors, splicing regulators have an important role in heat stress response. We have identified two plant-specific splicing regulators belonging to the Serine/Arginine-rich protein family, that mediate a major fraction of temperature-sensitive alternative splicing events and consequently thermotolerance. Our results show that the coordinated activity of transcription factors and splicing regulators mediate the plasticity of plants to respond to different stress regimes.

Di 03.05.2022

Biozentrum

Prof. Helfrich

Natural Product Biosynthesis off the Beaten Path: Machine Learning-based Discovery of Non-Canonical Natural Products
Prof. Eric Helfrich, Goethe Universität Frankfurt

Around 50% of all approved drugs over the last 40 years have either been natural products, natural product-derived, or at least inspired by natural products. The pace of the discovery of truly novel bioactive metabolites, however, has slowed down significantly as traditional bioactivity-guided screening approaches frequently result in the rediscovery of known metabolites. To circumvent the rediscovery problem in the post-genomics era, a new approach for the targeted identification of novel natural products has been developed: Genome mining is an in-silico natural product discovery strategy that uses genome sequence information to assess the natural product biosynthetic potential of an organism. Several generations of highly sophisticated genome mining pipelines have been developed identify and annotate of natural product biosynthetic gene clusters and predict the structures of the associated metabolites. These bioinformatic tools are, however, limited when it comes to the identification of biosynthetic gene clusters of natural products that are modified beyond recognition by spontaneous, non-enzymatic transformations or if their biosynthesis deviates significantly from the beaten path. Moreover, current genome mining pipelines cannot predict natural products structures of metabolites associated with poorly studied natural product classes. We are studying these non-canonical biosynthetic pathways and develop machine learning-based genome mining algorithms to chart the biosynthetic dark matter that is currently overlooked by state-of-the-art genome mining platforms. Our studies aim at expanding natural product chemical space and lead to the characterization of cryptic biosynthetic transformations.


Di 17.05.2022

Biozentrum

Dr. Fragkostefanakis

A Role for Plant Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes in Male Fertility and Drought Response
Prof. Iris Meier, Ohio State University

Unlike usually depicted in text-book figures, the nucleus is not a passive organelle resting at the center of the cell. Nuclei change shape and are actively transported and positioned within the cell. In animals, this is crucial for several developmental processes and physiological situations. Linker of nucleoskeleton and cytoskeleton (LINC) complexes connect the cytoskeleton through the double membranes of the nuclear envelope to the nucleoplasm and are involved in anchoring and moving the nucleus, mechanical signal transduction, nuclear morphology, and chromatin-nuclear envelope association. Plants share the inner nuclear membrane component of LINC complexes with animals and fungi but have acquired during evolution unique outer nuclear envelope components. Arabidopsis LINC complexes are involved in nuclear movement and positioning in several cell types, including pollen tubes, guard cells, and root hairs. A specific plant LINC complex is essential for nuclear migration during pollen tube growth. Lossoffunction mutations result in impaired pollen nuclear movement and defects in pollen tube reception and thus ultimately plant male fertility. Another LINC complex modulates stomatal dynamics during abiotic stress, involving calcium signaling and an actinremodeling event, relevant for plant drought tolerance.  We are investigating structure-function relationships of plant LINC complexes in these different contexts with a specific focus on plant-unique functions.

Di 21.06.2022
Biozentrum
Prof. Soppa

New players in archaeal cell division

Prof. Sonja Albers, Universität Freiburg

In archaea two fundamental different cell division systems are found: the FtsZ-based and the ESCRT III-based division machinery. In contrast to bacteria most archaea which employ the FtsZ-based system harbor two instead of one FtsZ homologue. They have been shown to have indeed different functions during cell division in Haloferax volcanii. We have shown that SepF, a homologue from the bacterial SepF, is essential in H. volcanii and anchors FtsZ to the membrane. Further, no homologues of bacterial cell division are present in archaea. Using pulldown experiments, we have now identified a new, essential player in FtsZ-based cell division in archaea. I will discuss the biochemical characterization and the impact of this protein on cell division in H. volcanii.

Di 05.07.2022

Biozentrum

Prof. Böhmer

Plants in the Anthropocene: from climate change to outer space
Prof. Maik Böhmer, Goethe Universität Frankfurt

einricht_mbw

Forschungsthemen


Lehrstuhl     Anrede Vorname     Nachname
               
Biologie und Genetik von Prokaryonten     Prof. Jörg     Soppa
Molekulare Biotechnologie     Prof. Helge     Bode
Molekulare Entwicklungsbiologie     Prof. Heinz Dieter     Osiewacz
Molekulare Mikrobiologie und Bioenergetik     Prof. Volker      Müller
Molekulare Mikrobiologie und Bioenergetik     Prof. Beate     Averhoff
Molekulare Zellbiologie der Pflanzen     Prof. Enrico     Schleiff
mRNA-based gene regulation     Dr. Andreas     Schlundt
Naturstoffgenomik Prof. Eric Helfrich
Pflanzliche Zellphysiologie     Prof. Claudia     Büchel
Physiologie und Genetik niederer Eukaryonten     Prof. Eckhard     Boles
RNA Regulation in Higher Eukaryotes

Prof. Michaela

Müller-McNicoll
RNA-Strukturbiologie     Prof. Jens     Wöhnert
einricht_mbw

Hochschullehrer


Anrede Vorname     Nachname     Lehrstuhl
               
Prof. Beate     Averhoff     Molekulare Mikrobiologie und Bioenergetik
Prof. Helge     Bode     Molekulare Biotechnologie
Prof. Maik Böhmer Pflanzenphysiologe
Prof. Eckhard     Boles     Physiologie und Genetik niederer Eukaryonten
Prof. Claudia     Büchel     Pflanzliche Zellphysiologie
Prof. Eric Helfrich Naturstoffgenomik
Prof. Volker      Müller     Molekulare Mikrobiologie und Bioenergetik
Prof. Michaela Müller-McNicoll RNA Regulation in Higher Eukaryotes
Prof. Heinz Dieter     Osiewacz     Molekulare Entwicklungsbiologie
Prof. Enrico     Schleiff     Molekulare Zellbiologie der Pflanzen
Dr. Andreas     Schlundt     mRNA-based gene regulation
Prof. Jörg     Soppa     Biologie und Genetik von Prokaryonten
Prof. Jens     Wöhnert     RNA-Strukturbiologie
einricht_mbw

Lehre

In der Lehre ist das Institut beteiligt an den Bachelorstudiengängen Biowissenschaften, Biophysik und Bioinformatik sowie an den Lehramtsstudiengängen des Fachbereichs Biowissenschaften und der Biologieausbildung der Mediziner. Darüber hinaus bietet es die zwei Masterstudiengänge Molekulare Biowissenschaften und Molekulare Biotechnologie an und ist an anderen kooperativen Masterstudiengängen beteiligt.

einricht_mbw

Kolloquium

Die Vorträge finden jeweils dienstags um 17:15 Uhr statt. The talks starts Tuesday at 17:15.

Ort: Biozentrum auf dem Campus Riedberg, Raum 260/3.13

Where:  Campus Rieberg, Biocenter, Section of the Building 260 Room 3.13

Open Street Map, Google Maps, pdf


Talks already held:

Di 12.04.2022

Biozentrum

Dr. Fragkostefanakis

Orchestration of plant heat stress response and thermotolerance by transcription factors and splicing regulators
Dr. Sotirios Fragkostefanais, Goethe Universität Frankfurt

Plants are often exposed to heat stress conditions during the warmer period of the year. Their survival depends on the activation of heat stress response, which comprises the induction of hundreds of genes including the essential for thermotolerance, heat shock proteins (HSPs). Heat stress transcription factors (HSFs) are the core regulators of heat stress response. Using tomato as a model, we have characterized four HSFs which control the major phases of the stress response: activation, acclimation and attenuation. In addition to transcription, high temperatures affect the pre-mRNA splicing profile of many genes, including several HSFs. In the case of HsfA2 and HsfA7, alternative splicing leads to the generation of protein isoforms with distinct properties and contribution to stress response, suggesting that next to transcription factors, splicing regulators have an important role in heat stress response. We have identified two plant-specific splicing regulators belonging to the Serine/Arginine-rich protein family, that mediate a major fraction of temperature-sensitive alternative splicing events and consequently thermotolerance. Our results show that the coordinated activity of transcription factors and splicing regulators mediate the plasticity of plants to respond to different stress regimes.

Di 03.05.2022

Biozentrum

Prof. Helfrich

Natural Product Biosynthesis off the Beaten Path: Machine Learning-based Discovery of Non-Canonical Natural Products
Prof. Eric Helfrich, Goethe Universität Frankfurt

Around 50% of all approved drugs over the last 40 years have either been natural products, natural product-derived, or at least inspired by natural products. The pace of the discovery of truly novel bioactive metabolites, however, has slowed down significantly as traditional bioactivity-guided screening approaches frequently result in the rediscovery of known metabolites. To circumvent the rediscovery problem in the post-genomics era, a new approach for the targeted identification of novel natural products has been developed: Genome mining is an in-silico natural product discovery strategy that uses genome sequence information to assess the natural product biosynthetic potential of an organism. Several generations of highly sophisticated genome mining pipelines have been developed identify and annotate of natural product biosynthetic gene clusters and predict the structures of the associated metabolites. These bioinformatic tools are, however, limited when it comes to the identification of biosynthetic gene clusters of natural products that are modified beyond recognition by spontaneous, non-enzymatic transformations or if their biosynthesis deviates significantly from the beaten path. Moreover, current genome mining pipelines cannot predict natural products structures of metabolites associated with poorly studied natural product classes. We are studying these non-canonical biosynthetic pathways and develop machine learning-based genome mining algorithms to chart the biosynthetic dark matter that is currently overlooked by state-of-the-art genome mining platforms. Our studies aim at expanding natural product chemical space and lead to the characterization of cryptic biosynthetic transformations.


Di 17.05.2022

Biozentrum

Dr. Fragkostefanakis

A Role for Plant Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes in Male Fertility and Drought Response
Prof. Iris Meier, Ohio State University

Unlike usually depicted in text-book figures, the nucleus is not a passive organelle resting at the center of the cell. Nuclei change shape and are actively transported and positioned within the cell. In animals, this is crucial for several developmental processes and physiological situations. Linker of nucleoskeleton and cytoskeleton (LINC) complexes connect the cytoskeleton through the double membranes of the nuclear envelope to the nucleoplasm and are involved in anchoring and moving the nucleus, mechanical signal transduction, nuclear morphology, and chromatin-nuclear envelope association. Plants share the inner nuclear membrane component of LINC complexes with animals and fungi but have acquired during evolution unique outer nuclear envelope components. Arabidopsis LINC complexes are involved in nuclear movement and positioning in several cell types, including pollen tubes, guard cells, and root hairs. A specific plant LINC complex is essential for nuclear migration during pollen tube growth. Lossoffunction mutations result in impaired pollen nuclear movement and defects in pollen tube reception and thus ultimately plant male fertility. Another LINC complex modulates stomatal dynamics during abiotic stress, involving calcium signaling and an actinremodeling event, relevant for plant drought tolerance.  We are investigating structure-function relationships of plant LINC complexes in these different contexts with a specific focus on plant-unique functions.

Di 21.06.2022
Biozentrum
Prof. Soppa

New players in archaeal cell division

Prof. Sonja Albers, Universität Freiburg

In archaea two fundamental different cell division systems are found: the FtsZ-based and the ESCRT III-based division machinery. In contrast to bacteria most archaea which employ the FtsZ-based system harbor two instead of one FtsZ homologue. They have been shown to have indeed different functions during cell division in Haloferax volcanii. We have shown that SepF, a homologue from the bacterial SepF, is essential in H. volcanii and anchors FtsZ to the membrane. Further, no homologues of bacterial cell division are present in archaea. Using pulldown experiments, we have now identified a new, essential player in FtsZ-based cell division in archaea. I will discuss the biochemical characterization and the impact of this protein on cell division in H. volcanii.

Di 05.07.2022

Biozentrum

Prof. Böhmer

Plants in the Anthropocene: from climate change to outer space
Prof. Maik Böhmer, Goethe Universität Frankfurt


Institut für Molekulare Biowissenschaften

Campus Riedberg
Biozentrum N210-207
Postfach 6
Max-von-Laue-Straße 9
60438 Frankfurt

T +49 69 798-29603
F +49 69 798-29600
E info-mbw@bio.uni-frankfurt.de
WhatsAPP +49 1525 4967321

Geschäftsführender Direktor: 
Prof. Dr. Jens Wöhnert
gd.mbw@bio.uni-frankfurt.de

Stellv. Geschäftsführende Direktorin:
Prof. Dr. Michaela Müller-McNicoll

Allgemeine Informationen:
Dr. Markus Fauth
T 069 798 29603
Dr. Matthias Rose
T 069 798 29529

Sekretariat:
Brunhilde Schönberger,
N250, EG, Raum 0.05,
T 069 798 29553